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Abstract—Microarray represents a high throughput technology 

for analyzing expression profiles, and thus it has been widely 

applied in the study of pathogenesis of glioma. However, most of 

the analyses focused on detecting the differentially expressed 

genes in glioma. Although it is well accepted that the pathway-

derived signatures is more reproducible than that at gene level, 

few meta-analyses of multiple microarray datasets at system 

level have been previously performed. In this article, we 

performed meta-analysis on different published glioma 

expression profiles and compared the overlapping of signature 

at gene and pathway level. Pathway enrichment analysis result 

of GeneGO database and Gene Set Enrichment Analysis (GSEA) 

showed that 100% and 64% of the similarity was higher than 

that of genes respectively. Moreover, we integrated other omics 

data on glioma, such as MicroRNA expression profiles and 

Chip-Seq data, for further verification. The results showed that 

the significant signatures of different data sets are more similar 

at pathway level than at gene level. 12 pathways found by 

GeneGO database were shared by four stages among several 

datasets. 5 of these pathways, such as Regulation of epithelial-

to-mesenchymal transition (EMT), TGF-beta-dependent 

induction of EMT via SMADs, were putative novel pathways on 

glioma and need further experimental verification. 

Keywords-glioma; omics data; meta-analysis; pathway 

enrichment analysis 

I.  INTRODUCTION  

Microarray technology has been widely used in 

molecular biology studies, especially in cancer research. With 

the wide application of microarray, various genome-wide 

gene expression profiling studies were performed recently. 

However, the noisy nature of microarray data, together with 

the relatively small size in each study, often results in 

inconsistent biological conclusions [1, 2]. Therefore, it is 

necessary to apply meta-analysis approaches combining 

several studies to obtain a more reliable and robust result. 

Meta-analysis, a set of statistical techniques that combine 

results from several studies, has been recently applied to 

microarray analysis for increasing the reliability and 

robustness of results from individual studies [3]. 
Glioma is the most common type of primary brain tumor 

in adults [4,5], which starts in the brain or spine and arises 

from glial cells. Based on their histological appearance, 

gliomas can be divided into two major subtypes according to 

the 2007 WHO classification [1]: astrocytic tumors, including 

pilocytic astrocytomas (PA), astrocytomas and glioblastomas 

(GBM), and oligodendroglial (OD) tumors, including pure 

OD tumors and mixed oligoastrocytic (MOA) tumors.  

Gene expression profiling of glioma have been 

performed in the past few years, and some differentially 

expressed genes have been identified, such as the genes 

CDKN2A, PTEN, RB1 and TP53. Some specific genetic 

changes (amplification of EGFR, IDH1 mutation, and 1p19q 

LOH) were also observed in glioma groups. Though there has 

been success in identifying the genes and underlying genetic 

changes correlated with glioma, the complex molecular 

mechanism of cancer remains unclear. It is well known that 

cancer is a system disease [6, 7]. The analysis of microarray 

data at the pathway level has an inherent advantage for 

researches in cancer. It has been previously reported that—the 

differentially expressed genes often have little overlap, 

whereas pathway analysis often generates improved 

consistency [8]. Our group has also verified the hypothesis in 

the more recent study [9]. 

Based on these conditions, we integrated and analyzed 

omics data sets of glioma, such as gene expression microarray, 

MicroRNA and Chip-Seq data sets. In this article, we applied 

Cancer Outlier Profile Analysis (COPA) [10] to detect the 

significant differentially expressed genes in R environment. 

We then used GeneGo’ Metacore for pathway enrichment 

analysis. Gene Set Enrichment Analysis (GSEA) [11] and 

MAPE [3] approach were also implemented in this study. 

II. MATERIALS AND METHODS 

We collected four gene expression profiling datasets on 

glioma including tumors and normal brain tissues from the 

Gene Expression Omnibus (GEO) database. All the datasets 

were performed using Affymetrix oligonucleotide microarray 

[12-14]. According to Rhodes et al. [15], meta-analysis on the 

basis of two types of sample, normal brain and glioma tissues, 

were comparable. Before the analysis, we processed the whole 

datasets by MAS5.0 algorithm in R platform. Then Median 

Absolute Deviation (MAD) [16] was used for between-chip 
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normalization, and data filtering was then applied for 

eliminating bad spots.  

Cancer Outlier Profile Analysis (COPA) method was 

performed for detecting different expressed genes between 

normal and cancer samples. The COPA [10] package was 

performed in R environments. According to the algorithm, the 

COPA statistic is defined: all measurements for a gene are 

standardized by the overall median and median absolute 

deviation for that gene, and then the COPA statistic is the   

percentile of the data in the disease group. The pre-filtration 

threshold was set as defaulted 95th percentile, which means 

that the genes with a number of outlier samples less than the 

95th percentile were removed from further consideration. A 

threshold cut-off for ‘outlier’ status was set and applied to all 

genes. 

Furthermore, the interested genes were mapped to 

GeneGo’ MetaCore  for pathway enrichment analysis. In 

MetaCore, the p-value represents the probability to randomly 

obtain the intersection of certain size between two 

gene/protein datasets following hypergeometric distribution. 

Gene Set Enrichment Analysis (GSEA) was also applied in 

this study to assess which geneset or pathway is significant in 

this study. Additionally, MAPE, a powerful tool improved by 

Shen [3] for meta-analysis among multiple studies, was 

performed for pathway analysis. Moreover, we applied it to 

other omics data sets, such as MicroRNA expression datasets 

and Chip-seq data sets to further analysis. 

III. RESULTS 

A.  Data Collcetion 

The raw gene expression data sets on glioma were 

downloaded from Gene Expression Omnius (GEO) public 

database at NCBI. The data included patient tumor and 

normal brain samples. The gliomas were pathologically 

diagnosed to subtypes according to WHO standard. Table 1 

summarizes the detailed information of the four datasets.  

B. Microarray statistical analysis for glioma datasets 

Currently, many statistical methods have been used for the 
identification of differentially expressed genes [17,18], such 
as t-statistic and SAM. The t-statistic is the most commonly 
used method that based on the assumption that all disease 
samples are over-expressed. However, these traditional 
analytical methods are not suitable for detecting genes which 
only over-expressed in a small number of cancer samples [19]. 
More recently, some novel methods have been developed. As 

a novel and powerful approach for the identification of 
significant genes, COPA was derived from the t-statistic by 
replacing the mean by the median. Through applications to 
public cancer microarray data sets, it has shown that COPA 
can perform better than the usual t-statistic in these cases. 
Accordingly, this method was applied in this study to meta-
analyze the datasets. 

According to the algorithm of COPA [10], we classified 
the analysis detection in 2-class samples as Normal VS 
Glioma. Since the glioma can be classified into several 
subgroups, we got 11 groups of two-class in all for the COPA 
analysis. The significant genes numbers of all datasets were 
close at the value of 1.8 that was used as the COPA threshold 
to define the ‘outlier’ status in the cancer samples. The text-
mining searches in the Entrez PubMed database showed that 
853 out of 6306 (14%) genes were associated with glioma. 

Then we mapped these differentially expressed genes to 

GeneGO, a manually curated and comprehensive commercial  

database for pathway enrichment analysis. We found that a 

total of 213 pathways in GeneGO database have p value of 

0.05. As shown in Fig. 1, the pathways could be divided into 

several GeneGO’s Ontology categories. For example, 48 

pathways were associated with development procedure, 41 

pathways were related to immune response and 19 pathways 

were relevant to apoptosis and survival.  

 

 

Figure 1.  GeneGO Ontology classification of 213 enriched pathways 

 
TABLE 1.  Information on Microarray Expression Profiling Data of Glioma  

Dataset Platform 
Sample 

Number 

Sample Information 

Gene 

Number Normal 

Tumor 

Astrocytic Glioblasto

mas 

Oligodendrogliomas 

PA A OD OA 

Data1 HG-U95Av2 25 5 6 / 7 7 / 12625 

Data 2 
U133-Plus2.0 

Array 
284 8 8 29 159 52 28 54675 

Data3 
U133-Plus 2.0 

Array 
15 6 / / 8 1 / 54675 

Data4 
U133-Plus 2.0 

Array 
180 23 / 26 81 50 / 54675 

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

50 Xi’an, China, August 18–20, 2012



 
Moreover, we performed the Gene Set Enrichment 

Analysis (GSEA) to assess which gene set/pathway is 
significant among the datasets [11]. In this study, we took the 
C2 curated gene sets from the Molecular Signature Database 
(MSigDB) as the gene set annotations, and then 513 outlier 
gene sets with p value of 0.05 were obtained.    

C. Comparison of the signature similarity at different levels 

As we supposed, the similarity of signature at the system 

level is higher than the gene level. In order to validate the 

hypothesis, we performed overlapping analysis based on the 

gene level and pathway/gene set level. For the four datasets, 

11 pairs of datasets could be compared according to the 

different stages of the glioma. Fig. 2 shows the comparison of 

the overlapping percentage among differentially expressed 

genes, pathways enriched by GeneGo’s database, and gene 

sets enriched by GSEA. The result showed that the 

consistency across studies was higher at the pathway/Geneset 

level than at the gene level. The p-value for the difference of 

overlapping between outlier genes and GeneGO’s enriched 

pathways were 2.77e-07 by paired t-test. We also evaluated 

the overlap of gene sets found by GSEA software. The result 

indicated that 64% of the two-pair data sets are more 

overlapped at the gene set level than that at the gene level. 

From the analysis with GeneGO and GSEA software, we 

verified that the signature similarities at the pathway/Geneset 

level are higher than that at the gene level. 

 

 
Figure 2. Comparisons of overlapping analysis among differentially 

expressed genes, enriched pathways in GeneGO database and enriched gene 
sets in GSEA  

 

D. Identification of novel glioma pathways by meta-analysis 

at pathway level 

From the meta-analysis result, we knew that the 
overlapping of the enriched pathways was much higher than 
that at the gene level. It also obviously revealed that the 
identified pathways were predominantly more robust and 
closer to the phenotype of interest than that at the gene level. 
In order to identify novel glioma related pathways, we 
compared the number of GeneGO’s enriched pathways in the 
four datasets classified by grades (Fig. 3). 12 common 
pathways shared in at least four stages were listed in Table 2. 

Among them, the top 6 pathways have been confirmed that 
related to glioma in PubMed. 

 

 

 

 

 

 

 

 

 

Figure 3. Number of enriched pathways overlapped by various stages 

calculated based on GeneGO analysis  
 

TABLE 2. The 12 GeneGO’s pathways overlapped by four stages among 

datasets 

Pathway Name 
Pubmed 

Count* 

Chemokines and adhesion 633 

Cell cycle (generic schema) 617 

TGF, WNT and cytoskeletal remodeling 344 

WNT signaling pathway. 

Part 1. Degradation of beta-catenin in the absence WNT 
signaling 

5 

WNT signaling pathway. 

Part 2 
5 

Cytoskeleton remodeling 1 

Role of IAP-proteins in apoptosis 0 

Regulation of G1/S transition (part 1) 0 

NOTCH1-mediated pathway for NF-KB activity modulation 0 

Regulation of epithelial-to-mesenchymal transition (EMT) 0 

TGF-beta-dependent induction of EMT via SMADs 0 

Non-genomic (rapid) action of Androgen Receptor 0 

 

TABLE 3.The top 6 potential novel pathways (GeneGO) found from 4 

datasets 

Pathway Name 
Object 

Count 

Pubmed 

Count 

Percentage

（%） 

Role of IAP-proteins in 
apoptosis 

31 23 74.19% 

Regulation of G1/S transition 

 (part 1) 
38 25 65.79% 

NOTCH1-mediated pathway 
for NF-KB activity 

modulation 

34 17 50.00% 

Regulation of epithelial-to-
mesenchymal transition 

(EMT) 

64 51 79.69% 

TGF-beta-dependent induction 

of EMT via SMADs 
35 29 82.86% 

Non-genomic (rapid) action of 

Androgen Receptor 
40 24 60.00% 

 

The other six pathways (listed in Table 3) have not been 
reported as glioma associated pathway. So we calculated the 
number of identified/all genes in these pathways, respectively, 
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and some indirect evidence was found to support our findings. 
The data in Table 3 indicate that most of the expressed genes 
in these pathways were reported to be related with the glioma 
in published papers. 

E. Pathway enrichment analysis by MAPE software 

MAPE is an integrated approach that meta-analyzes 

pathway enrichment by combining statistic significance 

across studies at the pathway level [3]. Compared with other 

pathway analysis methods, MAPE has more robust and better 

performance among multiple microarray studies. In this study, 

we applied this approach to analyze the four gene expression 

datasets mentioned above to further verify our hypothesis. In 

order to understand the mechanism more accurately, we 

analyzed the data according to grades. As a result, 91 

pathways correlated with the glioma were obtained. 

By comparison with the results from the gene expression 

data, 27 overlapped pathways were found in the two results, 

where the GeneGO’s pathway Ontology categories are in 

accordance with the previous results. 

F. Cross-validation by analyzing other omics data 

Other omics data were also analyzed to verify our 

hypothesis. MicroRNAs (miRNAs) are small, non-coding 

RNAs consisting of 20-25 nucleotides that regulate target 

gene expression at the post-transcriptional level. MicroRNAs 

have been demonstrated to play important roles in the tumor 

development, prognosis and metastasis [20-22]. In recent 

years, several miRNAs have been reported to be involved in 

modulation of glioma development, such as microRNA-21 

(miR-21), which has been demonstrated to be an oncogene in 

cultured glioblastoma multiforme cells [23]. Here, we 

downloaded three miRNAs expression profiles from the GEO 

database (Table 4) and conducted differential expression 

analysis using the same COPA package to detect significant 

miRNAs between the normal and tumor samples. The four 

widely web-based databases, TargetScan, miRanda [24], 

RNAhybrid [25] and TargetSpy [26], were used to predict 

target genes for selected miRNAs. To better study the 

biological functions of target genes, we subsequently 

retrieved the enriched biological pathways predicted by 

GeneGO database. 

 
 TABLE 4.  Information on MicroRNA Expression Profiling Data of Glioma 

Country Platform 
Number 

(all) 

Sample 
information 

MicroRNA 
Number 

Publicatio
n Year 

Normal Tumor 

Italy 

DiSteBa_Homo 
sapiens_Glioblas

toma miRNA 

340_v1.0 

74 37 37 340 2011.01 

Italy 

TJU-Human-

Mouse-

MicroRNA-

1.6k-v1.1 

35 13 22 353 2005.09 

USA 

Agilent 8 x 15K 

Human miRNA-

specific 
microarray 

34 10 24 1510 2009.12 

Totally we found 187 pathways correlated with glioma 

shared by the three datasets with p-value < 0.05. 5 out of the 

top 6 potential novel glioma pathways mentioned above in 

the study could be found in results (Table 5). So these 5 

pathways were considered to be putative novel glioma 

pathways. The GeneGO’s pathway Ontology categories are 

in accordance with the results obtained by the gene 

expression datasets. 

 
TABLE 5. The top 5 novel GeneGO’s pathways overlapped by four stages 

Pathway 

Regulation of G1/S transition (part 1) 

NOTCH1-mediated pathway for NF-KB activity modulation 

Regulation of epithelial-to-mesenchymal transition (EMT) 

TGF-beta-dependent induction of EMT via SMADs 

Non-genomic (rapid) action of Androgen Receptor 

 

Next-generation sequencing rapidly transforms our ability 

to profile the transcriptional, genetic, and epigenetic states of 

a cell [27], such as ChIP-seq is becoming the main approach 

to the genome-wide study of protein–DNA interactions [28]. 

We downloaded one chip-seq dataset (accession number 

GSM575227) from the study conducted by Fang [29] in the 

GEO database. MACS [30] and SISSRs [31] were used for 

statistically significant peaks determination, while 

PeakAnalyzer were applied for target genes annotation 

analysis. Then we mapped the genes to GeneGO for pathway 

analysis and got 76 glioma pathways with the 0.05 p-value. 

As one of the five pathways, TGF-beta-dependent induction 

of EMT via SMADs, was also be verified in the chip-seq 

analysis.  

   Moreover, we compared the pathways from gene 

expression data, MicroRNA expression data and Chip-seq 

data and found 14 overlapped pathways by the three different 

omics data. 

IV. DISCUSSION 

It is well known that cancer is a complex systems biology 

disease [7], which is correlated with a lot of factors such as 

genetic information, environment effect and personal 

behaviors. Among them, genetic information (e.g. gene 

mutation) was thought as the crucial factor in the cancer 

transformation and progression; environment effect (e.g. 

carcinogens) and personal behavior (e.g. smoking) will also 

cause and accelerate the cancer disease. Therefore, we 

proposed that we should find the significant signatures at a 

system level like gene sets, dynamic network or pathway 

level. To prove our hypothesis, we meta-analyzed four gene 

expression profiling datasets on glioma, trying find several 

potential novel pathways for the future experimental 

validation. 

   We also used COPA, a novel method, to identify the 

differentially expressed genes between glioma and normal 

samples in this study and then detected enriched gene sets 

and pathways via GESA tool and GeneGO’s MetaCore 

software. In the previous study, Katara et al [32] found that 

the genes CDKN2A, PTEN, RB1 and TP53 are expressing at 

a lower level than the normal and are also an important cause 

of cancers. The genes CDK4, PDGFA and PDGFB,PDGFRA  
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Figure 4. GeneGo graphic illustration of TGF-beta-dependent induction of EMT via SMADs pathway 

 

and PDGFRB, MDM2 and EGFR are over expressing at a 

rate higher than the normal and are acting as oncogenes in 

these cancers. Tanwar et al [33] found that the YKL-40 is the 

most differentially expressed gene in the series of GBMs 

versus normal brain. The data suggest YKL-40 may be 

involved in extracellular matrix degradation and/or 

angiogenesis. Specific genetic changes ( EGFRamplification, 

IDH1 mutation, and 1p19q LOH) were also observed in 

glioma group [34]. In the meta-analysis of glioma gene 

expression datasets, Dreyfuss et al [35] collected four 

independent gliomaresearch datasets including anaplastic 

astrocytoma (AA) and glioblastoma multiforme (GBM) 

samples. They combined the statistics across studies using 

the nonparametric rank sum method to identify several 

differentially expressed genes associated with glioma. In 

these studies, the common significant gene analysis based on 

t-test or t-test like statistics method calculated the average 

expression of genes without considering the individual 

differences. In comparison with them, we performed a novel 

method, Cancer Outlier Profile Analysis (COPA), to detect 

the outlier genes in the subsets of the cancer samples with the 

consideration of individual differences. Moreover, we 

proposed that the similarity at pathway level is higher than 

that at gene level, and then applied a powerful and manually 

curated GeneGO database and GSEA, a well-known statistics 

computing approach for path way enrichment analysis, to 

compare the overlapping at pathway level. Fig. 4 showed the 

pathway map for one of the novel pathways in GeneGO. It 

illustrated that the differentially expressed genes may reside 

at the different location of the same pathway and further 

supported our hypothesis. TGF-beta-dependent induction of 

EMT via SMADs, as the potential novel pathways related to 

glioma, need further biological experiments. The important 

role of Smad interacting protein 1 (SIP1) in glioma has been 

identified in Xia’s study [36]. Penuelas et al [37] identified a 

molecular mechanism that TGF-beta and LIF have an 

essential role in the regulation of Glioma-initiating cells 

(GICs) in human glioblastoma. Therefore, the novel pathway 

may play an active part in glioma. 

In addition, MicroRNA expression profiles and Chip-seq 

data were analyzed for further verification. Compared with 

the results from gene expression datasets, the five novel 

glioma related pathways were also found in this study. 

Recent reports have shown that FOXO3a inhibits cell-cycle 

progression at the G1/S transition by controlling transcription 

of the cyclin-dependent kinase inhibitor p27 (kip1), which is 

frequently down-regulated in human cancers, including 

human glioma. NF-kB is a transcription factor that plays a 

key role in carcinogenesis by controlling expression of 

several oncogenes, growth factors and cell adhesion 

molecules [38-40]. Li et al [41] previously reported that 

ECRG4 serves as a tumor suppressor in glioma, which were 

speculated to be involved in glioma cell growth suppression 

by regulating the NF- B pathway. 
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V. CONCLUSION 

Compared with the previous analyses, we verified the 

hypothesis that the overlapping of signatures is higher at the 

pathway/gene set level than that at the gene level. GeneGo 

database, GSEA and MAPE software were used for pathway 

enrichment analysis, which showed several potential but 

novel glioma pathways. Moreover, this method was applied 

to miRNAs expression profiles and Chip-seq data sets for 

further verification. In the future, we will develop some 

robust methods for interested genes detection and meta-

analyze the similarity of significant signatures at a system 

level, such as dynamic network, to better understand the 

molecular mechanisms of cancer occurrence and 

development. 
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