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Abstract—Clear cell renal cell carcinoma (ccRCC) is the most 

common and invasive renal-originated malignancy. Altered 

microRNA expression has been observed in many human 

cancers including ccRCC. Microarray is routinely used in labs 

worldwide for detecting cancer specific microRNA expression 

profiles, but no consistent conclusion could be drawn so far. The 

function of microRNAs in carcinogenesis of this tumor type is 

thereof largely unknown. In this study, we describe an 

integrative framework to improve the comparability of 

differentially expressed microRNAs (DE-miRNAs) from 

different experiments, and apply it to 4 publicly available 

microRNA expression datasets in ccRCC. The approach uses a 

novel statistic method for cancer outlier detection. The 

identified DE-miRNAs are then screened by POMA, an in-house 

developed predictor, for microRNAs with real regulatory 

activity in the disease. The proposed framework not only 

achieves high reproducibility across different datasets but also 

identifies a consistent set of 12 DE-miRNAs which could be 

putative biomarkers and therapeutic targets. The targets of DE-

miRNAs in each dataset were then mapped to functional 

databases for enrichment analysis. Both novel and previously 

characterized microRNA-regulated molecular pathways are 

identified that are likely to contribute to the pathogenesis of 

ccRCC. Overlapping comparison suggests that independent 

ccRCC expression profiles are more consistent at pathway level 

than that at gene/microRNA level. 

Keywords—meta-analysis; microRNA expression; Clear Cell 

Renal Cell Carcinoma;  pathway enrichment; GeneGO’s 

database 

I.  INTRODUCTION 

Renal cell carcinoma (RCC) represents the most common 
urological neoplasm. It accounts for more than 90% of the 
malignancy arising from the kidney and the incidence is 
continuously increasing [1]. Clear cell renal cell carcinoma 
(ccRCC) is the most frequent histological subtype of RCC. 
The overall clinical outcome of ccRCC is poor for lack of 
efficacy in traditional chemotherapy and radiotherapy [2]. 
Development of new treatment strategies has been slowed by 
the lack of biomarkers for the disease. Therefore, detecting 
new diagnostic and prognostic biomarkers in ccRCC becomes 
an important topic in study. microRNAs are short non-coding 
RNA molecules that regulate gene expression by translational 

inhibition or mRNA degradation [3]. Recent evidence 
suggests that aberrant changes in their expression are 
associated with human malignancies [4, 5]. Consequently, 
identifying microRNA expression profiles in diseases have 
recently gained remarkable interest. Using microRNA 
microarray techniques, various studies have identified 
microRNAs that are differentially expressed between ccRCC 
lesions and adjacent normal tissues. Nevertheless, the DE-
miRNA lists reported by different laboratories vary widely 
and a common ccRCC-specific microRNA signature is so far 
not available. 

In light of this inconsistency, we describe herein an 
integrated approach to improve the inter-dataset 
reproducibility for microRNA expression signatures. We then 
applied the proposed approach to 4 microRNA expression 
microarray datasets associated with ccRCC and obtained a 
consistent microRNA expression signature. Furthermore, we 
examined the functions and pathways that are most likely to 
be affected by the deregulated microRNAs. We demonstrate 
that the expression signatures of independent datasets are 
more consistent at pathway level than at microRNA/gene 
level. We also have identified novel microRNA-regulated 
molecular pathways that are likely to contribute to the 
pathogenesis of ccRCC. Fig. 1 displays the pipeline of the 
whole procedure in this study. 

II. RESULTS 

A. Detection of Differentially Expressed MicroRNAs with a 

Novel Statistical Method 

The t-statistics is the most popular method for differential 
gene expression detection in microarray studies. Recently, it’s 
been realized that oncogenes have heterogeneous activation 
patterns in most cancer types. Some oncogenes show altered 
expressions only in a small subset of samples. The study of 
Tomlins et al. [6] showed that t-statistics has low detection 
power in this case. The problem associated with t-statistics 
has motivated a series of new analytical methods [7-9]. 
Through applications to public prostate cancer microarray 
datasets in our previous study, we have demonstrated that the 
newly developed statistics showed superior performance than 

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

37 Xi’an, China, August 18–20, 2012



 

 

  

Figure 1.  Schematic diagram depicting the analysis pipeline in this 

study. 

traditional t-statistics in outlier detection, and therefore 
provided useful alternative to the t-statistics. In this study we 
used maximum ordered subset t-statistics (MOST) [9] for 
outlier detection. MOST seems to have superior performance 
when the number of activated samples is unknown. 

We collected 4 publicly available microRNA profiling 
datasets. For each dataset we used MOST to identify 
differentially expressed outliers from subsets of cancer 
samples. The percentile of outliers is set to 0.05 to retrieve the 
top 5% and bottom 5% of the miRNA outliers. 

B. Refinement of DE-miRNA Lists with the Pipeline of 

Outlier MicroRNA Analysis (POMA) 

To further refine the microRNA outlier lists and remove 
the false positive discoveries, we applied POMA (Pipeline of 
Outlier microRNA Analysis), an in-house developed 
prediction model to the outlier lists generated by MOST. 
POMA is a simple model created in our previous study [10] to 
evaluate the relevance of microRNAs in a given disease 
condition. microRNAs with poor regulatory activity will be 
excluded from further analysis. The underlying hypothesis in 
POMA is that the microRNA activity can be reflected by the 
deregulated expression of its target genes; microRNAs having 
larger proportion of unique targeting outlier genes are more 
reliable to show regulatory activity. The stepwise procedure of 
POMA is as follows:  

a) We first reconstructed the human microRNA-mRNA 
interaction network, based on the microRNA-mRNA 
interaction data extracted from 4 experimental validation 
databases (miRecords, TarBase, miR2Disease, miRTarbase) 
and 3 computational prediction databases (HOCTAR, 
ExprTargetDB, starBase). 

b) By reanalyzing the publicly available gene expression 
data from Gene Expression Omnibus (GEO), we identified 
deregulated genes in ccRCC samples vs. normal samples. 

c) The outlier genes detected above were then mapped to 
the microRNA-mRNA interaction network to construct a 

candidate microRNA-mRNA interaction sub-network in the 
ccRCC condition. 

 

Figure 2.  Pair-wise comparison between 4 datasets at different levels. X 

axis shows the 6 pair-wise comparison sets derived from 4 datasets. Y axis 

denotes the overlapping percentage at different levels. 

d) A parameter was defined to measure the probability of 
microRNA having regulatory activity in ccRCC condition:  

score

: Number of outlier genes exclusively targeted by a 

specific microRNA; : Number of all the outlier genes 

targeted by a specific microRNA; (). 

Z_score is then calculated for each candidate microRNA 
in the sub-network. Using a threshold of 0.001, we identified 
a list of active microRNAs with potential regulatory role in 
ccRCC. 

e) The predicted active microRNAs were then cross-
matched with the DE-miRNA list of each dataset. The 
intersected microRNAs are retained for subsequent analysis 
(See additional file 1 for detailed list of intersected miRNAs). 

C. Inter-dataset Consistency is Improved after POMA 

Filtration 

 After POMA filtration, the miRNA outlier list is reduced 
to a highly robust subset of direct functional microRNAs in 
ccRCC. By comparing the percent overlap of these lists, we 
observed a higher overlap between different datasets after 
POMA filtration. The overlapping percentage is illustrated in 
Fig. 2. The p-values for the difference in overlap were 
4.38165E-05 by paired t-test, indicating the significance of the 
result. Although the number of outliers decreased, the 
consistency between different datasets is significantly 
enhanced. The improved consistency enables us to extract 
common microRNA expression signatures from these datasets. 
A set of 12 microRNAs shared by all the 4 datasets were 
retrieved, listed in Table I. Furthermore, to validate the 
relevance of these microRNAs in the regulation of ccRCC, we 
performed a literature search of the above identified 
microRNA markers. All of the 12 microRNAs within this set 
have been previously described for their roles in renal cell 
carcinoma. The number of supporting literatures for each 
microRNA is also listed in Table I. These “literature curetted” 
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microRNAs could serve as a focused but robust panel to 
distinguish clear cell renal carcinomas from normal kidney 

tissue.

TABLE I.  DE-MIRNAS WITH OUTLIER ACTIVITY IN CCRCC PATHOGENESIS SHARED BY 4 DATASETS.  

Human microRNA Accession No. Chr 
Chromosomal 

location 

microRNA 

cluster 
Family 

Pubmed 

citation No. 

hsa-miR-210 MIMAT0000267 11 transcripts 0 210 15 
hsa-miR-138-5p MIMAT0000430 3 intergenic 0 138 5 

hsa-miR-16-5p MIMAT0000069 13 transcripts 1 15 2 

hsa-miR-224-5p MIMAT0000281 X transcripts 1 224 9 
hsa-miR-34a-5p MIMAT0000255 1 intergenic 0 34 5 

hsa-miR-184 MIMAT0000454 15 intergenic 0 184 6 

hsa-miR-122-5p MIMAT0000421 18 intergenic 1 122 6 
hsa-miR-126-3p MIMAT0000445 9 transcript 0 126 5 

hsa-miR-155-5p MIMAT0000646 21 transcript 0 155 14 

hsa-miR-15b-5p MIMAT0000068 3 transcript 1 15 3 
hsa-miR-532-5p MIMAT0002888 X transcript 5 188 1 

hsa-miR-660 MIMAT0003338 X transcript 6 188 0 

TABLE II.  THE NUMBER OF VARIOUS ENRICHED BIOLOGICAL THEMES FOR DIFFERENT DATASETS. 

Dataset DE-miRNA Target 
GO-BP 

FDR < 0.05 

GO-MF 

FDR < 0.05 

KEGG 

FDR < 0.05 

GeneGO 

FDR < 0.001 

GSE11016 21 853 18 9 2 99 

GSE 12105 22 764 54 11 7 152 
GSE 16441 35 1136 110 15 11 149 

GSE 23085 31 895 53 11 13 125 

Shared 5 388 8 7 6 62 

D. MicroRNA Targets Prediction and Functional 

Enrichment 

For each dataset, we conducted a high-stringency target 
prediction to identify potential target genes of the microRNAs 
that are differentially expressed. Target genes were retrieved 
from both experimentally supported databases and prediction 
algorithms (See Method section for detailed information). 
Number of targets obtained for each dataset is listed in table II. 
Detailed list of target genes for each dataset could be found in 
additional file 2. To estimate the overall effect of the 
microRNAs on cellular functions, the targets from each 
individual dataset were mapped to several functional databases 
including GO [11], KEGG [12] and GeneGO (GeneGO, Inc.) 
Table II illustrates the number of various biological themes 
which are enriched with target genes for each dataset. Detailed 
lists of significantly enriched functional terms/pathways are 
available in Additional file 3.  

E. Identification of ccRCC Related Functions and Pathways 

Gene Ontology (GO) analysis suggested that the predicted 
targets of DE-miRNAs in ccRCC were significantly enriched 
for GO terms associated with transcription and cell cycle, 
including: regulation of cyclin-dependent protein kinase 
activity, transcription, DNA-dependent regulation of 
transcription, regulation of cell proliferation, sequence-specific 
DNA binding and transcription regulator activity.  

The top KEGG pathways regulated by DE-miRNA 
converge on signaling pathways associated in cancer, such as 
Colorectal cancer, Cell cycle, Neurotrophin signaling pathway, 
Renal cell carcinoma, Prostate cancer, MAPK signaling 
pathway, and p53 signaling pathway. 

We also identified multiple GeneGO pathways that are 
statistically enriched with the DE-miRNA targets, such as cell 

adhesion, cell cycle and cytoskeleton remodeling, many of 
which are known to be involved in tumor pathogenesis. We 
found 62 significantly enriched pathways that were overlapped 
by 4 datasets (see Additional file 3). To evaluate the relevance 
of these pathways in ccRCC, we summarized the published 
literatures describing the network objects constituting the 
pathway map. Among the 62 enriched GeneGO pathways, 36 
pathways (58.1%) were found to be highly saturated with well-
characterized RCC-related objects (ratio>0.15, p-value<0.0001, 
see Additional file 7 for the volcano plot). These pathways are 
considered to be potential pathways contributing to renal 
carcinogenesis. Table III lists the top 10 of the significant 
GeneGO pathways enriched with ccRCC-related objects. A 
further literature search in PubMed highlighted 22 out of the 36 
putative ccRCC-related pathways with previous annotation in 
ccRCC carcinogenesis. The rest 14 pathways without literature 
support could be promising novel pathways which need more 
wet-lab validation (See details in Additional file 4).  

Fig. 3 shows the most significant novel GeneGO pathway, 
TGF, WNT and cytoskeletal remodeling. This pathway is 
enriched with network objects previously found to associate 
with renal cell carcinoma, such as TCF, AKT, VEGF-A, WNT, 
Frizzled, TGF-beta, RhoA, Beta-catinin, c-Myc, Cyclin D1 and 
c-Jun. It’s obvious in Fig. 3 that the pathway converges on 
WNT protein family and its downstream effectors. The WNT 
protein family has been implicated in oncogenesis and 
regulation of cell fate. Upon binding with the Axin-related 
protein, WNT regulates the stability of Beta-catenin, a 
downstream component of the Wnt signaling pathway. Beta-
catenin then activates transcription factors of the TCF/LEF 
family which function in cell fate specification, leading to 
activation of WNT responsive genes, such as c-Myc, c-Jun and 
Cyclin D1. Both c-Myc and c-Jun have been

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

39 Xi’an, China, August 18–20, 2012



 

 

TABLE III.  TOP 10 OF THE SIGNIFICANT GENEGO PATHWAYS ENRICHED WITH BOTH DE-MIRNA TARGETS AND CURATED RCC-RELATED GENES. 

Pathway map Pathway map category 
Ratio of RCC 

related objects 
P-value 

Pubmed 

citation 

count 

TGF, WNT and cytoskeletal remodeling Cytoskeleton remodeling 25/111 2.41E-16  

AKT signaling Signal transduction 17/43 5.00E-16 70 

Brca1 as a transcription regulator DNA damage 13/30 3.70E-13  

PTEN pathway Signal transduction 15/46 7.79E-13 22 

PIP3 signaling in cardiac myocytes Development 15/47 1.12E-12  

Regulation of epithelial-to-mesenchymal 

transition (EMT) 
Development 16/64 1.12E-11 12 

Influence of Ras and Rho proteins on G1/S 
Transition 

Cell cycle 14/53 1.14E-10 2 

Cytoskeleton remodeling Cytoskeleton remodeling 18/102 3.30E-10 2 

Regulation of G1/S transition (part 1) Cell cycle 11/38 7.43E-10 4 

Receptor-mediated HIF regulation Transcription 11/39 1.02E-9 7 

suggested to play a role in cell cycle progression, apoptosis and 
cellular transformation. Cyclin D1 is also involved in the cell-
cycle during G1/S transition. Activation of these genes has 
been reported during early RCC carcinogenesis. These findings 
are consistent with the observation that WNT signaling 
pathway is abnormally regulated during renal carcinoma 
development. Actin and a variety of actin-binding protein are 
also central in the pathway. Actins are involved in cell motility 
and maintenance of the cytoskeleton. Actin cytoskeletal 
disruption is found to be a characteristic event in early RCC 

 

Figure 3.  Graphic illustration of Cytoskeleton remodeling_TGF, WNT 

and cytoskeletal remodeling  pathway map. Red thermometers show an 
object that can be regulated by a DE-miRNA. The numerical subscript 

corresponding to the datasets to which the gene belongs. See additional file 5 

for the notation of each sign in this figure. 

development, which is required by morphological changes in 
transformed cells. 

TGF, WNT and cytoskeletal remodeling pathway also 
contains some objects without previous annotation in ccRCC 
carcinogenesis, such as ROCK, MEK1, p38, MAPK, axin. 
These objects could be putative therapeutic targets for new 
treatment strategies.  

F. Higher consistency can be reached at functional level 

than that at microRNA level 

After mapping targets of DE-microRNAs to functional 
databases, we performed pair-wise comparison between four 
datasets at the various observation level including DE-
microRNA, targets, GO-MF, GO-BP, and GeneGO pathway, 
respectively. For 4 different datasets, 6 pairwise sets are 
available for comparison. Fig. 2 shows the pairwise 
overlapping percentage between any two datasets. Then we 
performed paired t-test to decide whether differences observed 
between different levels are significant (see Table IV). We 
compared overlapping percentage at functional level (GO-MF, 
GO-BP and GeneGO pathway level) with that of DE-
microRNAs and targets. According to the p-values shown in 
Table IV, it is clear that the overlapping percentages at 
functional level are significantly different from that at 
individual DE-microRNA or target level (p<0.05). The result 
of consistency analysis draws a conclusion that the expression 
signatures of independent datasets at GO or pathway level are 
significantly more consistent than at microRNA or target level. 

III. DISCUSSION 

In this study, we collected 4 publicly available ccRCC 
associated microRNA microarray datasets, and processed them 
by a meta-analysis procedure to obtain more reliable 
expression signatures. The proposed approach features a novel 
outlier detection method (MOST) and a functional miRNA 
prediction model (POMA), which could enhance the 
reproducibility of results across multiple datasets. 

We first applied a new statistics to the identification of 
differentially-expressed microRNAs. Previous studies have  
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TABLE IV.  SIGNIFICANCE OF COMPARISON OF OVERLAPPING 

PERCENTAGE AT DIFFERENT LEVELS 

Levels p-value 

GO-BP 
DE-microRNA 1.18E-02 

Target gene 1.21E-02 

GO-MF 
DE-microRNA 1.68E-05 

Target gene 4.77E-04 

GeneGO 

pathway 

DE-microRNA 9.70E-06 

Target gene 1.14E-04 

 

shown that some oncogenes occur in only a minority of disease 
samples.This heterogeneous activation pattern is also one of 
the reasons for the inter-dataset inconsistency. Therefore, it is 
essential to examine the subset-specific cancer outlier genes. 
However, traditional analytical methods, for example, t-
statistics would fail to find such oncogene expression profiles. 
As previous papers have indicated, new statistics perform 
better than the traditional t-statistical methods and are generally 
more appropriate for cancer microarray data analysis. 

To further refine the list of DE-miRNAs and reduce false 
discovery, we used POMA to look for the subset of 
microRNAs with real regulatory activity in ccRCC condition. 
Those DE-miRNAs without regulatory activity in the disease 
were excluded from further analysis. POMA has already been 
successfully employed by our laboratory in the context of 
prostate cancer [10]. This model focuses not only on the profile 
of microRNAs, but also on transcripts with altered expression 
in ccRCC. After POMA filtration, final lists of DE-microRNAs 
is significantly reduced and substantial consistency is observed 
between the 4 independent miRNA microarray datasets. 

Finally we obtained a list of 12 functional microRNAs that 
are differentially expressed in all 4 datasets. Literature mining 
confirmed that all of these microRNAs were previously found 
to be deregulated in renal cell carcinoma, lending credibility to 
the list. The DE-miRNA list identified here could serve as 
potential disease markers which await wet lab validation. 
Moreover, the general DE-miRNA detection procedure 
proposed here is not limited to ccRCC only, but could be 
extended to a wide range of other disease as well. 

Consistency analysis at different levels provides solid 
evidence that cancer signatures at pathway level are more 
consistent across multiple datasets than at gene level. It’s well 
recognized that cancer is a typical complex disease 
characterized with concerted molecular changes. There is a 
growing trend to understand the carcinogenesis as an intricate 
network of functionally correlated genes. As functionally 
related genes often display a coordinated expression to 
accomplish their roles in the cell, one would expect that the 
inconsistent microRNA lists across studies are functionally 
more consistent. In other words, the discrepancies at gene level 
would be less pronounced when the they are mapped to 
functional groups or biological pathways [13].Therefore we 
propose that reliable cancer signatures should be investigated 
in the context of biological pathways. 

Functional analysis identified several biological pathways 
and processes which are preferentially targeted by the 
deregulated miRNAs. Looking initially at the top enriched GO 
terms, we see that many are involved in cell cycle regulation 

(e.g., G1/S transition). Deregulated cell cycle is a hallmark of 
neoplasia potentially caused by aberrant expression of cell 
cycle regulators. Recent studies showed that cell cycle 
checkpoint regulators such as cyclins and cyclin-dependent 
kinases, are coregulated by the deregulated microRNAs. For 
example, miR-16 family is reported to trigger a cell cycle arrest 
by coordinately suppressing multiple cell cycle regulatory 
genes [14]. Moreover, miR-16 happens to be among the 
deregulated microRNAs list identified in this study. All the 
evidences above corroborate the validity of the results of the 
present study. 

To evaluate the relevance of the enriched GeneGO 
pathways in ccRCC, we performed text mining at both object 
level and pathway level. Many of the objects that constitute 
molecular pathways are known to play important roles in the 
renal carcinogenesis. In addition to the pathways previously 
found to be critical in RCC tumorigenesis, this study also 
identified 15 novel ccRCC related pathways. Drugs designed to 
inhibit these pathways might be useful in preventing tumor 
formation. 

IV. CONCLUSIONS 

In this study we have integrated a new outlier detection 
method MOST with POMA prediction model to create a 
framework by which to meta-analyze multiple microRNA 
microarray datasets. The methodology would hopefully 
improve the comparability of different microarray datasets.  
Functional analysis demonstrated that cancer signatures at 
pathway level are more consistent across multiple datasets than 
at gene level. Novel pathways involved in renal cancer 
identified in this study might be promising drug targets for 
ccRCC treatment. 

V. MATERIALS AND METHODS 

A. Dataset Collection 

The publicly available datasets were retrieved from the 
Gene Expression Omnibus (GEO) as raw data files. Only 
profiles of ccRCC and non-matching normal renal tissues were 
extracted for analysis. The microRNA microarray expression 
datasets are summarized in Table V. The statistical methods 
used in the original articles for the identification of 
differentially expressed outliers are also listed. The gene 
expression files are given in additional file 6. Naming 
conventions changed somewhat between platforms, so 
microRNA probe sequences were mapped to latest Sanger 
miRBase version (release 18) [15] to unify the microRNA 
names. For the gene annotation, only genes with unique 
corresponding probe were retrieved, and those genes with 
multiple probes were removed. 

B. Determination of the Differentially Expressed MicroRNAs 

Signal intensities for each spot were calculated by 
subtracting median background intensities. After Quantile 
normalization, mean intensities were log2 transformed for 
statistical analysis. Outlier detection was performed with 
MOST, implemented in R scripts by Lian [9]. The percentile of 
outlier extraction was set as 0.05 (5%). 
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TABLE V.  SUMMARY OF MICRORNA EXPRESSION DATASETS USED IN THIS STUDY. 

GEO 

accession 
Platforms Probe Number 

Number of samples 
Statistics 

normal tissue cancer tissue 

GSE11016 LC MRA-1001 835 17 17 t-test 
GSE12105 Agilent Human microRNA Microarray  490 12 12 t-test 

GSE16441 Agilent Human microRNA Microarray  851 8 8 SAM 

GSE23085 LC MRA-1001 881 20 20 t-test 

C. Obtaining Target Genes for Differentially Expressed 

MicroRNAs 

Target mRNAs of the differentially expressed microRNAs 
were retrieved from databases with experimental evidence 
(miRecord), as well as from target prediction programs. 
Prediction of putative target genes was performed using three 
prediction programs: TargetScan, miRanda, and PicTar. Only 
targets found in at least two of the three prediction algorithms 
were retained in order to obtain a more solid result. 

D. Overlapping Analysis at Gene/Pathway level 

The percentage overlap between two datasets is calculated 
as follows: 

Overlapping percentage =
%100

21


 mnn

m , 

where n1= the number of all the data in dataset 1; n2= the 
number of all the data in dataset 2; m= the number of 
overlapping data between two datasets.  

E. Functional enrichment of targets of differentially 

expressed microRNAs 

To study the function of the differentially expressed 
microRNAs, we mapped their target genes to GO, KEGG and 
GeneGO databases. GO and KEGG pathway analysis was 
performed the using David; GeneGO pathway enrichment 
analysis was performed using the MetaCore

TM
 (GeneGO, St 

Joseph, MI, USA). P-values for significance analysis were 
determined by hypergeometric distribution to estimate the 
probability for a GO term or pathway that would be identified 
by chance alone. False Discovery Rate (FDR) adjustment was 
applied for multiple test correction. 
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