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Abstract—Gene-gene association or protein-protein interaction 

databases have been important resource for the study of cellular 

functions and human diseases. A number of gene association 

databases have been available in the public domain. Each of 

these databases has its own unique virtues, but no single 

database could provide enough confidence and coverage. These 

years some meta-databases have been built by integrating 

various resources of gene functional associations and weighing 

the evidence of each association by some score systems. In this 

work, we compared three weighted genome-scale human gene 

association networks constructed from three such meta-

databases, STRING, FunCoup and FLN, respectively. We found 

that the three networks share a large fraction of common genes 

but only quite limited overlapped interactions. However, most 

genes involved in important cellular processes and human 

diseases, as well as their pairwise interactions, is included in all 

of the three networks. This explains why all the three networks 

have been successfully applied in the study of cellular functions 

and diseases mechanisms. We believe that further integration of 

these meta-databases would provide higher confidence and 

coverage of gene associations in human proteome and facilitate 

the study of human gene association networks. 
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I.  INTRODUCTION  

Genes and proteins seldom carry out their functions alone. 
Instead, a group of genes or proteins usually interact and 
communicate with each other to perform a particular cellular 
task. Functional associations between genes or proteins, 
including direct physical binding and indirect interaction such 
as participation in the same cellular process, thus play 
important roles in cellular phenotypes. Gene associations in 
an organism could be represented as a network called gene-
gene association network or protein-protein interaction 
network, in which nodes and links correspond to genes 
(proteins) and their interactions, respectively[1, 2]. Studies of 
these networks have shed light on function and evolution of 
cellular systems, as well as revealed the interplay between 
gene functional associations and diseases[3-8].  Many 
databases have been set up to collect gene-gene (or protein-
protein) associations from different resources and methods, 
such as experiments, literature mining and computational 
prediction.  HPRD[9], MINT[10], BIND[11], Reactome[12], 
KEGG[13], MetaCyc[14] and ArrayProspector[15] are 

examples of such databases. Each of these databases has its 
own unique characters, while no single database could 
provide enough confidence and coverage. Hence there have 
been some efforts to construct meta-databases by integrating 
various resources of gene functional associations and 
weighing the evidence of each association by some score 
systems[16-18]. Weighted gene-association or protein-protein 
interaction networks reconstructed from these meta-databases 
have shown great power in the investigation of complex 
cellular systems, human diseases and drug intervening[17-20]. 
Here we conduct a network comparison on three of such 
meta-databases, STRING[16], FunCoup[17] and FLN[18].  

II. MATERIALS AND METHODS 

A. Human functional association meta- databases  

The three human functional association datasets under 
study are STRING [16] (Search Tool for the Retrieval of 
Interacting Genes/Proteins) , FunCoup [17](Functional 
Coupling) and FLN [18](Functional Linkage Network). All of 
them are meta-databases constructed by aggregating both 
physical and functional interactions between human proteins 
available from numerous sources and integrating the data by 
their own scoring systems to weigh the evidence of each 
association.  

B. Gene database of human genome 

We downloaded the gene database of human genome [21] 
from the NCBI ftp on June 21, 2011. This database includes 
45526 genes (Entrez gene ID), in which 21417 are protein-
coded genes. 

C. Data of functional modules  

Biological functional modules we studied included known 
human protein complexes and signalling pathways. For the 
list of human protein complexes, we use the Comprehensive 
Resource of Mammalian protein complexes (CORUM) 
database [22], where 1343 complexes and 2315 component 
proteins are listed in total as a core data. Signaling pathways 
were downloaded from the C2: CP collection of MSigDB 
database [23], which were curated from several online 
pathway databases. A total of 6804 genes involved in 880 
distinct pathways were included in this collection. 
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D. Data of disease-related genes 

We collected genes related with diseases from several 
databases including Immunome[24], InnateDB[25], OMIM 
(the Online Mendelian Inheritance in Man)[26], and 
DrugBank[27]. Immunome database collects 893 genes of 
human immune system. InnateDB database includes 2339 
innate immunity-relevant human genes manually collected by 
literature review (April, 2011). A total of 2651 disease genes 
were collected from the morbid map of the OMIM database, 
while 1372 drug targets for FDA approved human drugs were 
collected from the DrugBank database. 

E. Edge density 

Edge density of a network is the ratio of the number of 

edges to that of a completely connected network with the 

same number of nodes: 

Density =
 

       
, 

Where A, N are the numbers of edges and nodes in this 
network, respectively. 

F. Node degree and strength 

The degree of a node is the number of edges linked with the 

node. In a weighted network, the strength of a node is the 

total weights of the edges linked with the node.  

III. RESULTS AND DISCUSSION  

A. Description of the human functional association networks 

The three human functional association datasets under study 

are STRING [16] , FunCoup [17] and FLN [18]. All of them 

are meta-databases constructed by aggregating both physical 

and functional interactions between human proteins available 

from numerous sources and integrating the data by their own 

scoring systems to weigh the evidence of each association. 

See Table 1 for basic information of the three datasets. 

TABLE I.  BASIC INFORMATION OF THE HUMAN FUNCTIONAL 

ASSOCIATION DATASETS UNDER STUDY AND THE NETWORKS CONSTRUCTED 

FROM THEM  

 Informatio

n 

STRING FunCoup FLN 

Datasets URL http://string

-db.org 

http://funco

up.sbc.su.se 

http://genomebi

ology.com/2009

/10/9/R91/additi
onal 

Gene code  Ensembl 

protein 

code 

Ensembl 

gene code 

Entrez gene 

code 

Genes 17,369 17,150 21657 

interactions 1,288,886 2,290,853 22,388,609 

Range of 

confident 
score 

150~999 0.018~1 0.0427~19.0321 

Networks Genes 14,520 14,689 18,468 

Links 1,031,691 1,803,866 19,988,965 

Proteome 

coverage of 
genes 

67.8% 68.6% 86.2% 

Range of 

normalized 
link weights 

0.15~1 0.018~1 0.0022~1 

 

The three datasets use different code systems for genes. 
According to the Ensembl database [28], we converted 
Ensembl protein codes in the STRING and Ensembl gene 
codes in the FunCoup into entrez gene codes, respectively. 
Then we mapped the entrez gene codes of the three datasets 
onto the NCBI gene database of human genome[21] and only 
kept mapped protein-coded genes. Thus the STRING, 
FunCoup and FLN datasets include 14520, 14689 and 18468 
protein-coded genes, taking 67.8%, 68.6% and 86.2% of 
human genome protein-coded genes, respectively. Utilizing 
these genes and their linkages in the three datasets, we 
constructed three weighted functional association networks of 
human genome, named as network STRING, FunCoup and 
FLN, respectively. As shown in Table 1, the link weights of 
the three datasets vary in different areas. Dividing each weight 
by the maximum in the corresponding dataset, we normalized 
the weights into the area (0, 1]. 

 

Figure 1.  Comparisons of the basic features of the three human functional 
association networks. (A) Edge densities; (B) Distributions of node degree; 

(C) Distributions of node strength; (D) Distributions of edge weight. In (B), 

(C) and (D),logarithmic (base 10) scale is used for the Y-axis; the colors 
have the same meanings as in (A), while inserted histograms are 

comparisons of average values of the corresponding measures. 

 

Table 1 and Figure 1 show basic information and features 
of the three networks. It can be seen that network FLN has 
much more nodes and links than the other networks, with 
tenfold scales of network density and average node degree. 
For all the networks, the semi-log scale plots for the 
distribution functions of node degree, node strength and edge 
weight are decreasing curves, suggesting that large fractions 
of nodes and edges in these networks own small degrees, 
strength, and edge weights, respectively. That is, only small 
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parts of genes interact with great number of partners, while 
small fractions of interactions have high confidence scores. 
However, the distribution curves for measures of network 
FLN exhibit significantly different patterns with those of the 
two others. This network has broader profile of node degrees, 
and smaller range of node strength. Its curve of node degree 
distribution has a much gentler slope, whereas the curves for 
node strength and edge weight distributions decrease much 
sharply. This phenomenon suggests that although network 
FLN has much more links than the other networks, a great 
fraction of them has low confidence score. In fact, the edge 
weights of about 90% links are smaller than 0.05. Although 
network STRING and FunCoup have similar distribution 
curves for the three measures, network STRING has much 
larger average node strength and link weight, but smaller 
average node degree, suggesting this network includes more 
links with high confidence. Specifically, the smallest edge 
weight of network STRING is 0.15, whereas respectively 
about 90% and 60% links in networks FLN and FunCoup 
have edge weights smaller than 0.05. In summary, although 
the three networks include different numbers of interactions, 
network with fewer links include larger part of interactions 
with higher confidence. 

B. Overlap of nodes and links between networks 

When checking the nodes and links, we found that the three 
networks had 12520 and 95655 common genes and 
interactions, respectively. Although the networks have a large 
fraction of common genes (taking 86.2%, 85.2% and 67.8% 
of the total in networks STRING, FunCoup and FLN, 
respectively), there is quite limited fraction of common 
interactions (only taking 9.3%, 5.3% and 0.5% of the total in 
networks STRING, FunCoup and FLN, respectively). The 
situation is the same for overlaps between every two networks 
(Table 2). 

TABLE II.  OVERLAPS OF NODES AND EDGES BETWEEN EVERY TWO 

NETWORKS  

   Edges                                 

Nodes 

STRING FunCoup FLN 

STRING - 12,556 14,402 

FunCoup 110,094 - 14,578 

FLN 626,806 776,469 - 

 

As can be seen in Figure 1(C), the node strength profiles of 

the three networks are significantly different.  To compare 

the distributions of node strengths of the common genes in 

the networks according to their important levels in the 

networks, in each network, we converted the node strength to 

its rank among all node strengths of the network. Then we 

grouped the nodes into 10 bins from the top of ranks to the 

bottom, in which each bin includes 1/10 nodes.  At last we 

counted the occurrence frequency of the common genes in 

each bin.  As shown in Figure 2 (A), the distributions of node 

strength ranks of the three networks are clearly decreasing, in 

which that of FLN decreases most sharply and that of 

FunCoup most gently. This distribution suggests that a large 

fraction of important genes, i. e, genes own more high-

confident interactions in each network, appear in the common 

gene set.   

In Figure 2 (B) we show the distributions of edge weights 

of common interactions. It can be seen that peaks of high-

confident interactions are present in networks STRING and 

FunCoup, respectively. On the contrary, the distribution of 

edge weights of common genes in network FLN is 

monotonously decreasing, suggesting much more low-

confident interactions of this network overlap with 

interactions of the other two networks. In summary, the 

common interaction set includes significantly large fractions 

of high-confident pairs in networks STRING and FunCoup 

and low-confident pairs in network FLN. 

 

 
Figure 2.  Distributions of the common genes and interactions in the three 

human functional association networks. (A) Distributions of node strength 

ranks of common genes. (B) Distributions of edge weights of common 

interactions.  

C. Functional modules exhibited in the networks 

In has been known that, in cells, a group of genes or proteins 

usually collaborate with each other, forming a specific 

functional module so as to carry out a particular cellular task. 

Specifically, certain proteins physically interact with each 

other to form stable structural and functional units called 

protein complex[29]; while certain transcription factors 

regulate a group of target genes to coordinate cellular 

activities related to a particular biological process [30]. On 

the other hand, studies of biological networks have revealed 

that functional modules usually correspond to densely linked 

topological sub-networks of the global network[31, 32]. In 

this section, we investigate whether known human protein 

complexes and pathways are presented in the three networks 

and how proteins in these functional modules are linked. 

 

TABLE III.  DISTRIBUTIONS OF GENES OF FUNCTIONAL MODULES IN THE 

THREE NETWORKS AND THEIR LINKS  

 Average percentage of 

module genes in networks 

Average link density of 

modules in networks 

 STRING FunCoup FLN STRING FunCoup FLN 

Protein 

complexes 

90.7% 97% 100% 0.86 0.77 0.98 

Pathways 88% 94% 99% 0.59 0.30 0.74 
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A total of 1343 protein complexes and 880 pathways were 
extracted from the Comprehensive Resource of Mammalian 
protein complexes (CORUM) database [22] and the C2: CP 
collection of MSigDB database [23], respectively. As for the 
complexes, we only studied the 938 ones which consist of at 
least three component proteins. For each complex and 
pathway, we counted how many of its genes appear in each of 
the three networks and how many links among the genes were 
presented in these networks. As listed in Table III, most genes 
of the functional modules under study are presented in the 
three networks. Specifically, network FLN includes all 
complex genes and 99% pathway genes, while FunCoup 
includes more genes of functional modules than STRING. 
Furthermore, the average link densities of functional module 
genes in the three networks are significantly much higher than 
link densities of the three global networks (see Figure 1A for 
link densities of the three networks.), in which functional 
module genes are linked most densely in FLN and most 
sparsely in FunCoup.  

 

Figure 3.  Distributions of average edge weights of protein complexes (A) 

and pathways (B) in the three networks. 

Taking the confident levels of links into consideration, we 

calculated the average edge weight of each functional module 

in each of the three networks. In Figure 3 we show the 

distributions of average edge weights of complexes and 

pathways in the three networks. It can be seen that STRING 

includes most high-confident links between functional 

module genes. Actually, average edge weights of 92.3% 

complexes and 86.8% pathways in this network are at least 

0.6. However, although FLN includes most functional 

module genes and their links, the links exhibit lower 

confident levels compared with those in the other two 

networks. 

D. Disease-related genes in the networks  

Interactions between genes and proteins have been known 

deeply involved in the pathogenesis of diseases. Recent 

network-based approaches have demonstrated great success 

in the application of functional relationships among genes for 

understanding human diseases[7]. Here we investigate how 

many genes involved in the occurrence, development and 

intervening of diseases are presented in the three networks 

and the important levels of these genes in the networks. 

TABLE IV.  PERCENTAGES OF GENES IN THE FOUR DISEASE-RELATED 

GENE DATASETS THAT OVERLAP WITH GENES IN THE THREE NETWORKS AND 

THEIR COMMON GENES  

Networks STRING FunCoup FLN Common 

 

Datasets 

genes in three 

networks 

Immunome 85.3% 86.9% 99.2% 78.7% 

InnateDB 88.8% 95.6% 99.7% 86.2% 

OMIM 87.6% 90.3% 98.6% 82% 

DrugBank 88.7% 91% 99.1% 83% 

 
  Genes related with diseases were collected from 

Immunome[24], InnateDB[25], OMIM (the Online Mendelian 
Inheritance in Man)[26], and DrugBank[27] database, which 
include human immune system genes, innate immunity-
relevant human genes, disease causative genes, and drug 
targets for FDA approved human drugs, respectively. 
Mapping these genes into each of the three networks and their 
common gene set, we found that most of the disease-related 
genes under study appear in the three networks and their 
common gene set, in which FLN includes almost all the 
disease-related genes (see Table IV). In Figure 4 we show 
how node strength ranks of Immunome, InnateDB, OMIM  
and DrugBank genes distribute in the three networks. In most 
cases, the node strength ranks of genes in the four disease-
related gene sets exhibit decreasing pattern, suggesting that 
large fractions of disease-related genes have many high-
confident interactions in each network. It is noted that the 
distributions of Immunome, OMIM and DrugBank genes in 
FunCoup network are slightly different with those in the other 
two networks. In this network, the frequencies of top ranked 
genes are less than those of medium ranked genes.  

 
 

Figure 4.  Distribution of node strength ranks of Immunome (A), InnateDB 

(B), OMIM (C) and DrugBank (D) genes in the three networks. 

IV. CONCLUSIONS 

In this work, we compared three weighted genome-scale 

human gene association networks constructed from three 

meta-databases STRING, FunCoup and FLN, respectively. 

These meta-databases were constructed by aggregating 

physical and functional interactions between human proteins 

available from numerous sources, but different 

methodologies and input data were utilized to produce its 

own confidence scores for weighing the evidence of each 
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association. It was found that genes in network STRING and 

FunCoup  cover roughly the same fraction of human 

proteome, while FLN includes much more genes and 

interactions. The three networks own a fairly large fraction of 

common genes, but the overlap in terms of interactions is 

quite limited. When taking normalized confidence scores into 

account, STRING was found to include much higher fraction 

of high-confident interactions than the other two networks. 

Considering the application of gene association networks in 

the research of cellular functions and human diseases, we 

also explored the distributions of biologically important 

genes, i.e., genes of biological functional modules, and 

disease-related genes, in the networks. Most genes of known 

protein complexes and pathways were found presented in the 

three networks and they form densely connected topological 

modules in all the networks, in which STRING includes most 

high-confident links between genes of these functional 

modules. Furthermore, most genes known to be involved in 

the occurrence, development and intervening of diseases are 

presented in the three networks, and large fractions of these 

disease-related genes own many high-confident interactions 

in each network. Therefore, although the three networks only 

share a few overlapped interactions, information concerning 

genes involved in important cellular processes and human 

diseases, as well as their interactions, is included in all of the 

three networks. This explains why all the three networks 

have been successfully applied in the study of cellular 

functions and diseases mechanisms. It is expected that some 

computational approach could be developed to further 

aggregate these meta-databases for providing higher 

coverage of gene associations in human proteome.  
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