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Abstract—It has been known for quite some time that the 

1 / f dynamics play a vital role in living organisms. Recently 
we studied the long-range correlated dynamics of Boolean 
networks, and found that some networks could present 
the 1 / f dynamics while others couldn’t. An important 
question is what kind of networks can generate such dynamics? 
In this paper, we investigate this issue based on the attractor 
structure of Boolean networks. We find that multiple 
attractor networks prefer to generate the 1 / f dynamics and 
systems with large basin entropy tend to sustain such 
dynamics in a wide noise range. Models for eight real genetic 
networks also partially support these observations. 

Key words—Genetic Regulatory Network, Attractor, 
Basin Entropy. 

I. INTRODUCTION 
Mathematical and computational modeling is becoming 

increasingly important for understanding the complex 
dynamical interactions in genetic regulatory systems. Since 
Kauffman’s seminar inception, Boolean networks have 
been one of the most intensively studied models of discrete 
dynamical systems. Although such models are an over 
simplification of intracellular process, study of the 
relationships between structural organization and 
dynamical behaviors of Boolean networks have yielded 
important insights into the overall behaviors of genetic 
regulatory networks [1].  

In physiology, free-running healthy systems typically 
generate complex output signals that have long-range 
correlations. Deviations from the 1/ f pattern have been 
associated with disease or aging in various contexts [2, 3]. 
Generally, the long-range correlated dynamical behaviors 
include three regimes: Brownian noise, 1 / f process and 
white noise. In 2004, Amaral et al. studied the long-range 
correlations of cellular automata (CA) model, and they 
found that this model could generate a variety of rich 
dynamic behaviors under some ordered rules, whereas 
random Boolean networks could only present white noise 
dynamics [4]. Recently, we studied the long-range 
correlated behaviors of Boolean networks with 
perturbations (BNp). We found the evolution of the 
correlated behaviors of this model generally follows one of 
the three types shown in Fig 1. [5]. As the noise η  
increases, type I refers to the exponent α  goes through the 

Brownian noise regime, the 1/ f  dynamics and the white 
noise regime regularly; type II refers to it starts from the 
white noise and then enter the 1/ f  dynamics and finally 
returns to the white noise regime again; while type III 
refers to it stays at the white noise regime no matter what 
level of noise. Obviously, both type I and II can sustain the  
1 / f  dynamics in a continuous noise range while type III 
can’t. 

 

 
Fig. 1. Three evolution types of the exponent α  with respect to the noise 

η  

 
Despite its practical and fundamental interest, the origin 

of such correlated dynamics remains an unsolved problem. 
One important issue is what kind of networks can exhibit 
the 1/ f  dynamics show in the type I or type II. As the 
long-range correlated dynamics actually reflect the running 
smoothness of the system in its state space, it should be 
associated with the attractor structure of the networks. In 
this paper, we explore the presence of 1/ f  dynamics based 
on the partition of the state space (or the attractor structure). 
In Section 2, we briefly introduce Boolean networks, 
attractors and the basin of attraction, sensitivity and the 
long-range correlated behaviors of complex systems. Then 
we demonstrate the quantification of the state of Boolean 
networks in section 3, and present the simulation results 
and some discussions in section 4.  Finally, we conclude in 
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Section 5. 

II. BACKGROUND 

A. Boolean networks  
A Boolean network ( , )G V F  is defined by a set of 

nodes { }1, , nV x x=  , { }0,1ix ∈  and a set of Boolean 
functions { }1, , nF f f=  , { } { }: 0,1 0,1ik

if → . Each node ix  
represents the expression state of the gene ix , where 0ix =  
means that the gene is OFF, and 1ix =  means it is ON.  For 
each node ix  , a Boolean function 1( , , )

ii kf x x  with ik  
specific input nodes is assigned to it and is used to update 
its value at the next time step. Under the synchronous 
updating scheme, all genes are updated simultaneously 
according to their corresponding update functions. The 
network’s state at time t is represented by a binary vector 

1( ) ( ( ), , ( ))nx t x t x t=   and, in the absence of noise, the system 
transitions from state to state in a deterministic manner. 
The state space of Boolean networks can be partitioned 
into disjoint clusters of states. In each cluster, a randomly 
selected state will eventually attains a fixed state or some 
recurring states. Such state(s) are called attractors, and the 
states running into them comprise their basin of attraction. 
A network can have many attractors, but at least one must 
exist. It has been hypothesized that attractors in Boolean 
formalisms correspond to different cell types or cell fates 
of an organism. In other words, the phenotypic traits are 
encoded in the attractors. 

From the information processing perspective, the 
partitioning of state space into disjoint basins of attraction 
can be view as a classifier.  Within each basin, all states are 
in the same class in that they are associated with the same 
attractor. Krawitz proposed a parameter, the basin entropy, 
as a measure of the complexity of this classification 
process. The basin entropy h  of a network B  is defined as 
[6] 

2( ) logwh B w ρ
ρ

ρ

= −∑
 

where the weight wρ  of an attractor ρ  is the sum of all 
attractor states and its basin states normalized by the total 
state space 2n . Obviously, the basin entropy actually 
reflects the uncertainty of dynamical behavior based on the 
distribution of the size of attractions.  

B. The ordered behavior  
The sensitivity S  of a network, defined as the average 

sensitivity of the functions used in the network, is an 
ordered parameter that specifies how 1-bit perturbation 
spreads throughout the network on average. For 1S < , this 
perturbation tends to die out and the network runs in the 
ordered regime. For 1S > , this perturbation tends to 
diverge and the network runs in the chaotic regime. 
Networks operate along the boundary between order and 
chaos corresponding to 1S = and are said to be critical. 
Given a Boolean network ( , )G V F , its sensitivity can be 
calculated as[7] 
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where if
jα  defines to the activity of gene jx  in function if , 

( ,0) ( ,1)( ) ( ) ( )j j
i j i if x x f x f x∂ ∂ = ⊕  denotes the partial derivative of 

if  with respect to jx , ⊕  is addition modulo 2 and 
( , )

1 1 1( , , , , , , )j k
j j kx x x k x x− +=   , 0,1k = . 

C. The long-range correlated behaviour  
The long-range correlated behaviors actually reflect the 

smoothness of a time series generated from a complex 
system. Applying the commonly used detrended 
fluctuation analysis (DFA) method, such long-range 
correlated dynamics can be quantified by a scaling 
exponent α , which is extracted with the linear regression 
in double-logarithmic coordinates by a least-squares 
algorithm.  A DFA exponent of 1.5α =  indicates the system 
exhibits the ideal Brownian noise. The totally 
unpredictability of white-noise yields as 0.5α = .The 1/ f  
process, corresponding to 1α = , is a critical boundary 
between the Brownian noise regime and the white-noise. In 
practice, the 1/ f  process is relaxed to the range of 
0.9 1.1α≤ ≤ .   

III. METHODS 

A. Quantification of the State of Boolean Networks 
In reference [4], the state of CA models is quantified as 

the number of 1s in the corresponding binary vectors. 
However, it cannot reflect the basin structure of Boolean 

networks. Given a starting state 0s  under a noisy 
environment, it may either evolve toward its attractor states 
and run around them or jump out of its attraction basin and 
runs around other attractor states. In this paper, we always 
select the starting state 1(0) ( (0), , (0))nx x x=   from the largest 
basin B  and its corresponding attractors A are defined as 
the zero point. Specifically, a state ( )x t  is quantified as  

( )
( ) 0 ( )

( )

q x t B
u t x t A

c x t A B

∈
= ∈
 ∉ ∪  

where q  is the minimal steps to reach an attractor state 
a A∈  in the absence of noise, c  is a large constant number 
which represents the system deviates from its original basin 
and runs into other cellular type or function (in this paper 
we set this value as 25). Our definition can explicitly 
indicate how far the system is from its original functional 
type. 
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B. Generation of Boolean Networks 

In this paper, all simulations are performed on networks 
of size 10n =  and 4k = . For each sensitivity S , we 
randomly generate 300 networks. The sensitivity S  ranges 
from 0.7 to 1.3 with an increment 0.1. Thus, we totally 
investigate 2100 networks. Concerning the noise 
environment, each gene can perturb independently from 0 
to 1 or 1 to 0 with probability η . The noise η  ranges from 
0.05% to 2% with an increment 0.05%.   

In order to eliminate the effect of starting state 0s , we 
first run a network 1000 steps then record its trajectory by 
10000 steps at a specific noise η . The DFA exponent α  of 
the trajectory is calculated by time scales 10 1000l≤ ≤ . The 
final value of α  for a network is an average over 20 
independent runs. 

C. Results and discussions 
   As mentioned in introduction, our intuition is that the 

basin structure of the state space should have important 
influence on the generation of the 1/ f dynamics. First, the 
number of attractors is an important parameter to 
characterize the state space. Here, we generate two kinds of 
networks which have no constraint on the number of 
attractors and those with just two attractors. Fig.2. shows 
the percentage of networks generating the 1/ f  dynamics 
in the two kinds of networks. More than 80% of the 
networks with two attractors can generate the 
1/ f dynamics, whereas only 40~70% of the networks can 
in those without such constraint. Taking a further look at 
the latter networks, we find that more than 90% of those 
which can’t present the 1/ f dynamics have only one 
attractor. This suggests that single attractor networks tend 
to lose the 1/ f dynamics. Concerning networks without 
networks on the number of attractors, the percentage of 
networks with the 1/ f dynamics increases with sensitivity 
S . This may be explained as networks with higher 
sensitivity tend to have more attractors. Based on these 
observations, we may conclude that networks with multiple 
attractors prefer to generate the 1/ f dynamics. 

 
Fig. 2. The percentage of networks presents the 1 / f  dynamics at each 
sensitivity, blue colour for networks constructed randomly and red colour 
for networks with just two attractors. 

 
Because some networks may sustain the  1 / f   dynamics 

in a wide noise range, while others may exhibit in a narrow 
noise range, we now study the influence of the basin size 
on the width of the 1/ f  dynamics based on networks with 
two attractors. As introduced in section 2.1, the size of 
basins can be characterized by the basin entropy. In this 
paper, we define the width of the  1 / f  dynamics as 

0.9 1.1( ) 0.0005d η η= −  
where 0.9η  and 1.1η  denote the noise rate η  corresponding 

the DFA exponent α  is 0.9 and 1.1 respectively. Figure 3 
shows the average width of the  1 / f  dynamics in each 
basin entropy range. It is easy to see that the average width 
increases with the basin entropy, and it reaches the 
maximal value when the entropy is larger than 0.5.  This 
indicates that networks with larger basin entropy tend to 
exhibit the 1/ f  dynamics in a wider noise range than those 
with smaller basin entropy. 

 
Fig. 3. The average width of the 1/ f  dynamics in each basin entropy for 
networks with two attractors. 

From the definition of the basin entropy, small entropy 
generally indicates that the state space is partitioned 
heterogeneously by each basin.  Specifically, one basin of 
attraction is very large while the other is very small. As 
such two basins degrade into one lager basin, the basin 
entropy becomes zero and the average width of the 1/ f  
dynamics should also decrease to zero. That is the 1/ f  
dynamics will disappear gradually. This induction in turn 
consists with that single attractor networks can hardly 
generate the 1/ f  dynamics.  

   TABLE I. The number of attractors and basin entropy for 8 real 
genetic networks 

Real 
biological 
networks 

Number 
of 

genes 

Number 
of 

attractors 

Basin 
entropy 

Type of  
the 1/f 

dynamics 

Melanoma 
cellular 

7 4 0.79  I 

Mammal 
cellular 

10 2 1 I 
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Neuroglia 
lump cellular 

14 4 0.62 I 

Drosophila 
cellular 

14 455 0.79 I 

Fission yeast  14 2 0.93 I 

Budding 
yeast 

11 3 0.98 I 

Drosophila 
segmentation 

6 10 0.7 I 

Arabidopsis 6 3 0.55 I I 

 
Recently, our group studied the 1/ f  dynamics for eight 

real genetic systems: fission yeast cell cycle, budding yeast 
cell cycle, drosophila cell cycle, mammalian cell cycle, 
drosophila segment polarity, Arabidopsis flower 
morphogenesis, human neuroglioma cell and metastatic 
melanoma cell. The Boolean models of these systems are 
extracted from references [8-15]. As the maximal entropy 
is a function of the number of attractors, here we 
normalized the basin entropy of each system with their 
maximal entropy so that it lies between 0 and 1. Table 1. 
lists the number of genes, attractors, the relative basin 
entropy and the type of the 1/ f  dynamics of those 
networks. All these models have more than one attractor 
and their relative basin entropy is larger than 0.5. 
Therefore，these two aspects may be the partial reasons 
for the generation of the 1/ f  dynamics in these eight 
models.   

IV. CONCLUSION 

A hallmark of critical behaviour is the spontaneous 
emergence of complex and coordinated macroscopic 
behaviour in the form of long-range spatial or temporal 
correlations. Such coordination across many scales enables 
information to propagate over time from one part of the 
system to another in a high degree of specificity and 
sensitivity. Our previous study show the 1/ f  dynamics 
may be an important character of real genetic networks. In 
this paper, we investigate the mechanism of such dynamics 
based on the basin structure of the state space. First, we 
find that multiple attractor structure of state space prefers 
to generate the dynamics. Second, systems with larger 
basin entropy tend to sustain such dynamics in a wide noise 
range. Our findings are of great interest for understanding 
of the origin of such dynamics.  However, there still exist 
about 10~20% networks can’t generate the 1/ f  dynamics 
even for networks with two attractors. Therefore, there are 
some other factors, such as the number of relevant nodes 
and their corresponding basin entropy, which may affect 
the 1/ f  dynamics, and this will be our future work.  
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