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Abstract—Time-series gene expression data analysis plays an
important role in bioinformatics. In this paper, we propose
a biclustering method to detect local expression patterns in
time-series gene expression data by performing clustering on
both gene and time dimensions. Our method aims to find
gene subsets which show coherent expression profiles in some
time subsets which have a consecutive order in a bicluster.
Specifically, our temporal biclustering method is composed of
a discretization procedure and a follow-up sequence alignment,
which can identify similar local expression profiles and further
reveal coherent local relations such as complementary and time-
lagged coherence. We apply our method to yeast cell cycle data,
and find several biologically important biclusters.

I. INTRODUCTION

Gene expression data records the concentration of mRNAs
in given conditions and plays an important role in understand-
ing large-scale biological systems. In particular, time-series
gene expression data is composed of a series of experiments
recording the mRNA concentration in different time points.
This type of data can describe the dynamical changes of gene
expression, and thus it is helpful to characterize the time-
dependent biological processes, for example cell cycle, rhyth-
micity, development, disease progression, and so on [1][2].
Computational methods to analyze time-series gene expression
data are in pressing need.

A great number of clustering methods, such as hierarchical
clustering and k-means algorithm, have been designed to group
genes or conditions into subsets based on their gene expression
profiles [3]. The underlying assumption is that genes in the
same subset perform the coherent functions or regulatory
mechanisms, and experimental conditions in the same subset
are coherent(for example the similar growing environment or
the same disease). Traditional clustering methods group either
genes or conditions, but it is more meaningful to cluster the
two factors simultaneously, that is, some genes characterizing
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a special cellular processes share similar expression patterns
at a specific period. In many situations, biologists believe that
a cellular process is active only under a subset of conditions
[4].

As a result, biclustering methods have been suggested to
identify coherent local profiles in gene expression data. The
resulting bicluster is defined as a subset of genes that exhibit
compatible expression pattern over a subset of conditions,
which may be a transcription module or an active pathway. In
time-series gene expression data, the condition is time point,
and thus it is naturally to require that the time points in a
subset must be consecutive [5]. We note that some temporal
biclustering algorithms have been proposed to analyze time
series data and provides in biological meaningful results [6][7].

In this paper, we propose a new biclustering method by con-
sidering the time consecutiveness in time-series gene expres-
sion data. This method is based on discretization preprocessing
[4]1[8] and sequence alignment [9]. In next section, we describe
the framework of our method. Some computational results in
yeast cell cycle data are shown in the third section. Finally we
analyze the results and discuss the biological insights of our
results.

II. METHOD

We denote a microarray dataset as a N x M matrix. Each
row is the profile of a gene in all conditions and each column is
an array for all the genes in a condition. Suppose there are N
genes and M time points (generally N > M). Each bicluster
is described as a submatrix {N;, M;} fori=1,---, K, N; is
the subset of genes and M; is the subset of conditions for the
ith bicluster. In our model, the condition is time point, and
therefore the time points in a bicluster must be consecutive,
i.e., M; should consist of consecutive time points.
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A. Discretization preprocessing

Firstly we preprocess the raw gene expression matrix by a
discretization technique. There have been many discretization
techniques specifically for time series gene expression data to
detect the transitions in expression patterns between successive
time points. Regarding to the impact of discretization on
biclustering, we find that the techniques based on transfor-
mations between time-points obtain better results than those
using absolute values [10].

Let X = {x;;}nxam be the raw data. We aim to group
genes having similar expression profiles, i.e., the abundant
of these genes changed synchronously. As the first step,
we transform X to matrix Y = {y;;}nx(m—1)> Yij
T;j+1 — ¥;;. Matrix Y describes that how genes varies in
different time intervals. Next step, the matrix Y is transformed
to Z = {zij}nx(m—1)- In matrix Z, K symbols are used
to represent the varieties of the expression profiles. In other
words, we divide the values of matrix Y into K bins. To
avoid the impact of extreme values, each bin has the similar
number of figures and is represented by a symbol (see Figure
1). To realize this we divide the normal distribution of Y
into intervals and identify each interval that contains % of
the values from the normal distribution. Finally values in each
interval of Y are represented by a single symbol in Z.

X1,1 X1,2 X1,(m-1) X1,m
X1 X2,2 X2,(m-1) Xom
Xn1 Xnz | e Xn,(m-1) Xnm
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Fig. 1. The discretization preprocessing procedure for time series gene

expressing data.

B. Revealing the local expression patterns by sequence align-
ment

From the symbolized matrix Z, we try to identify local
expression patterns in biclusters. Here we name a kind of
expression profiles with specific shape as an expression pat-
tern. In order to get all the potential patterns, we utilize the
sequence alignment method. The expression profile of each
gene can be seen as a sequence of symbols, then we can find
the common sub-sequences between every pair of genes by
pairwise alignment, and every sub-sequence corresponds to a
local expression pattern.

In our model, the alignment ignores insertion, deletion, and
replacement. We only consider whether the same positions of
both sequences are repeated. Therefore, there are only diagonal
scores in the dot matrix s(¢),i =1,2,---, M — 1. Given two
sequences A = (a1, a9, -, ap—1) and B = (b1, ba, -, byr—1),
we define the score function of the ith position in diagonal of
dot matrix as follows:

S(Z— 1)—|—m(al,b1), |5(z—1)—|—m(a1,bl)\

s(i) = > |s(i — 1)
0, otherwise
(D
where
1, a; = b1
m(aiabi) == _17 a; = _bl (2)
0, otherwise

When we calculate all the scores in the diagonal, the
maximum is the length of longest common sub-sequence.
After pairwise alignment through all pairs of genes, we get a
pattern list P which stores all longest common sub-sequences
between gene pairs and their positions. Our score function can
find not only same sub-sequences, but also complementary
sub-sequences which mean that some local profiles of both
genes have inverse shape.(see Figure 2)

N

A"
.~

Fig. 2. Some examples to illustrate the sequence alignment procedure: (a)
The longest common sub-sequence with length 3 and (b) A reverse longest
common sub-sequence with length 4.

C. Detecting the biclusters

A naturally assumption is that longer patterns tend to have
real biological meanings. So we determine biclusters by a
greedy strategy to pick out long local expression patterns.
In beginning, we pick out the longest sub-sequence from the
pattern list, and then the time interval is confirmed, i.e., the
position of the sub-sequence. In next step we will find genes
with the same or complementary sub-sequences in this time
intervals, and derive the gene subset. The gene subset and
time interval together constitute a bicluster. We then delete this
pattern from the pattern list and repeat the above procedures
until the list is empty. Finally, we get a series of biclusters.
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The resulting biclusters are in large number and we adopt
some strategies to narrow down the biclusters. Since it is more
likely that short patterns appear by chance, we remove the
biclusters whose time points are less than /N;. We also remove
the biclusters with the number of genes less than No. And
then, there are overlaps between biclusters. We combine those
similar biclusters into a representative one. The following
score is defined to measure the similarity of two biclusters.

Given two biclusters By = ([1,J1) and By = (I2, J2), T
is the row index set and .J is the column index set. |By| =
|I;| % |.J1| and | B2| = |I2| X |.J2| mean the number of elements
in the two biclusters. The similarity score is defined as follows:
_ BinNB
- B U By

|B1 N Ba| = |I1 N I2| x |J1 N J3] is the number of elements
in the intersection set of By and B, and |B; U Ba| = |B1| +
| B2| — | B1 N Bs| is the number of elements in the union set of

B and B,. We set a threshold and merge the biclusters with
scores larger than the threshold.

J(B1, B2) = J((11, J1), (I2, J2)) 3

III. COMPUTATIONAL RESULTS

To validate our method, we test it in the yeast gene
expression datasets by Spellman [11]. This data was produced
to study the temporal expression profiles of genes involved in
cell cycle. We select the o factor dataset, which contain 6178
genes in 18 time points. After removing the missing data, 4489
genes are left. In our experiments, we set K = 5, N; = 8, and
Ny = 10, similarity threshold 0.5. Finally our method reveals
128 biclusters in this dataset.

These biclusters have several types. Some include genes
with similar local patterns (see Figure 3) and some include
genes with both similar local patterns and complementary local
patterns (see Figure 4). We note that genes in the same biclus-
ter have high coherence in the time interval of the bicluster
(more than 0.9), but low coherence in all time points (less than
0.4). Genes with similar local patterns mean that they are co-
expressed in the specific time intervals and may involve in
a similar regulatory process, and genes with complementary
local patterns are in reversed regulatory process. For example
some genes are activated while others are inhibited.

One advantage of our method is that we can reveal the time-
lagged patterns. It is apparent that many genes do not regulate
each other simultaneously but after a certain time lag, so the
expression profiles should have time-delay[12]. By our method
it is easy to detect this case: every bicluster corresponds to a
sub-sequence, we just compare the sub-sequences among these
biclusters and pick out those with coherent sub-sequences but
delayed for a time interval. Commonly the delayed time is
less than two hours. In our result, we find many time-lagged
biclusters. (see Figure 5)

CCC-biclustering method [6] is an efficient temporal bi-
clustering method developed in recent years. The aim of our
method and CCC is similar, that is, detecting the coherent
sub-sequences among genes in specific time intervals from
discretized data. Therefore, our method performs similarly in

gene expression values

8 10 12 14 16 18
time points

Fig. 3. A bicluster with similar gene expression pattern. Biclus-
ter 12 contains 17 genes: YBR280C, YDLO75W, YDLO81C, YDRO47W,
YDRO73W, YDRI169C, YDRIS7C, YDR455C, YERO044C, YERO90W,
YER162C, YGLO67W, YHR142W, YILO76W, YIL091C, YJLO14W, and
YOLOS53W. The time interval is from time point 9 to 17.

gene expression values

2 4 6 8 10 12 14 16 18
time points

Fig. 4. A bicluster with complementary gene expression pattern. Bicluster 9
contains 12 genes: YBL0O30C, YCRX07W, YDLO12C, YDLOSOC, YDR355C,
YDR410C, YER161C, YGR129W, YJL197W, YJR141W, YKROS8C, and
YMR303C. The time interval is from time point 1 to 9.

bicluster 44

30 min later

bicluster 69

Fig. 5. Two biclusters with time-lag relationship. Bicluster 44 and 69 have
the same expression pattern and a time-lag of 30 minutes.

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

390

Zhuhai, China, September 24, 2011



terms of accuracy comparing with CCC. However, our method
has several advantages. Firstly our discretization method di-
vides the raw data homogeneously by the normal distribution,
rather than CCC which sets cutoffs to divide raw values.
Our method can avoid the impact of extreme values and the
discretized matrix Z is more homogeneous. On the other hand,
CCC uses the theory of suffix trees. However our method is
easily interpreted and accessible to biologists.

IV. DISCUSSIONS AND CONCLUSIONS

In this section, we analyze the biological significance inside
the biclusters identified by our method. As we know, genes
sharing coherent expression patterns are thought to have co-
expression relationships, and this phenomenon may be caused
by co-regulated behavior. Co-expression genes have tight
relations such as sharing similar regulatory mechanisms or
executing similar functions.

A. biclusters in biological networks

If genes are regulated by the same mechanism, a intuitive
hypothesis is that either some genes are regulated by the
same transcription factors (TFs), or some belong to a protein
complex. In the former case, the distances among genes in
a protein-protein interaction networks (PPI) are 2, i.e., they
have common upstreams; and in the latter case, the genes in
a complex are adjacent, the distances among them are 1. We
compute the average shortest paths (ASPs) for genes in the
same biclusters. Almost all ASPs are between 2 and 3 (see
Figure 6), and most distances of genes in the same bicluster
are 1 or 2.

To check the significance of this conclusion, randomized bi-
clusters are sampled from the whole PPI network of BioGRID
[13]. 98 biclusters in all 128 have significantly shorter ASPs
than randomized cases.

Let’s take bicluster 5 as an example. There are 10 genes
in this bicluster: Y AR009C, YLR109W, YLR179C,
YLR19TW, Y LR406C, Y LR441C, Y NL096C,
YNL244C, YOL139C, and Y PR044C. 9 of them
appear in the whole PPI network. The distances among these
genes are completely 1 or 2. YLR406C, Y LR441C, and
Y NL096C' constitute the ribosomal protein complexes and
they are adjacent in the network. We also find the common
TFs regulating these genes in YEASTRACT database [14],
Yaplp regulates all 9 genes in this bicluster and many
co-regulatory relationships can be observed. (see Figure 7)

B. Gene functions enriched in biclusters

Next we check the coherence of gene functions in biclusters.
There exist many methods and computational tools to annotate
gene functions and compute the significance of functions in
gene sets [15][16]. We choose the g:profiler software [15] to
find the enriched functions in our identified biclusters.

As we discussed above, long patterns are more likely to have
real coherent relationships. In all the 128 biclusters, the longest
one contains 11 time points and the second longest bicluster
has 10 time points. Both biclusters have many significant

number of gene pairs

3 4 5 6 7
length of shortest path

(a)

number of biclusters

28 3 1'2 38
length of average shortest path

(b)

Fig. 6. (a) The shortest path distribution for the whole PPI network, the
average value isabout 4; (b) The average shortest path of our 128 biclusters.
Most APSs are near 2.5 and shorter than the random case.

26

Fig. 7.

The regulatory relationships in bicluster 5.
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TABLE I
LIST OF ENRICHED GO FUNCTION ANNOTATIONS FOR SOME EXAMPLE BICLUSTERS

Bicluster ID Genes Enriched functions p-value
GO0:0022627 cytosolic small ribosomal subunit 1.40E-05
YARO09C | BIOGRID:00000 BioGRID interaction data 1.98E-05
YBLO95SW [ GO:0022626 cytosolic ribosome 4.01E-05
YBR112C | REAC:503952 Ribosomal scanning 6.75E-05
YFLO057C Formation of translation initiation com-
YJRI139C | REAC:502542 plexes containing mRNA that does not cir- | 6.75E-05
YLR109W cularize
YLRI79C | REAC:504040 Start codon recognition 7.22E-05
9 511114]}:{0196625 REAC:504769 Eiltki)(())somal scanning and start codon recog- | -, »5p s
YOLO40C | REAC:504671 Translation initiation complex formation 7.22E-05
YOL139C Activation of the mRNA upon binding of
YOR167C | REAC:504643 the cap-binding complex and elFs, and sub- | 7.22E-05
YOR285W sequent binding to 43S
YPLO79W Formation of translation initiation com-
YPLOBIW | REAC:502544 plexes yielding circularized Ceruloplasmin | 7.22E-05
YPR0O44C mRNA in a ’closed-loop’ conformation
GO0:0015935 small ribosomal subunit 7.59E-05
. Association of phospho-L13a with GAIT
REAC:501247 element of Ceruloplasmin mRNA 8.25E-05
REAC:504522 3’ -UTR-mediated translational regulation 1.58E-04
REAC:504521 L13a—mediat§d transla}tional silencing of 1.58E-04
Ceruloplasmin expression
REAC:504611 Cap-dependent Translation Initiation 2.06E-04
REAC:504612 Eukaryotic Translation Initiation 2.06E-04
REAC:504507 Translation 2.47E-04
KEGG:03010 Ribosome 4.88E-04
YBLO30C
YCRX07TW
YDLO012C
YDLO080C
YDR355C
9 ¥g§f6l?g KEGG:00010 Glycolysis / Gluconeogenesis 2.47E-03
YGR129W
YJL197W
YJR141W
YKRO088C
YMR303C
YBRO0O36C | GO:0006530 asparagine catabolic process 2.07E-05
YDL165W [ GO:0004067 asparaginase activity 3.11E-05
YEL067C | GO:0043562 cellular response to nitrogen levels 3.11E-05
YILO41W [ GO:0006995 cellular response to nitrogen starvation 3.11E-05
44 YJL162C | KEGG:00460 Cyanoamino acid metabolism 6.81E-05
YLRI55C | GO:0006528 asparagine metabolic process 7.44E-05
YLRI57C [~GO:0030287 cell wall-bounded periplasmic space 7.44E-05
ggﬁ??\é’ KEGG:00910 Nitrogen metabolism 2.26E-04
Alanine, aspartate and lutamate
YPL251w | KEGG:00250 e P & 8.16E-04

biological functions such as ribosome, translation initiation,
translational regulation, and so on. There are 19 biclusters
containing 9 time points. In them, 14 biclusters are enriched
by some gene functions. Taking bicluster 9 as an example, we
find that the gene set is enriched by glycolysis and gluconeo-
genesis. Other biclusters in our result also have significant GO
functions. In bicluster 44, the network positions of these genes
are dispersive, but this set also has many common functions:
cellular response to nitrogen, many metabolic process, cell
wall-bounded periplasmic space, and so on. All these functions
are important in cell cycle process (see table I).

Time-lagged biclusters have additional advantage. For ex-
ample, there are no significant GO functions for genes in
bicluster 8 at first glance using g:profiler. However close

check reveals that this bicluster is comprised of a time-lagged
bicluster together with bicluster 19, i.e. bicluster 8 and 19
have the same expression pattern but the time interval of
bicluster 8 is a little later than that of bicluster 19. If we do not
consider the time-lagged case, bicluster 8 is not a significant
bicluster and genes in it have no significant functions. But
now genes in both biclusters are found to have many GO
functions such as 3’-UTR-mediated translational regulation
(p — value < 6 X 1075 ), translation initiation complex
formation (p — value < 5 x 107° ), start codon recognition
(p — value < 5 x 107° ) and so on .
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