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Abstract—Phase transition widely exists in the biological world,
such as the transformation of cell cycle phases, cell differenti-
ation stages, cancer development steps, and so on. These are
considered as the conversions of a genetic system from one
phenotype/genotype to another. In previous studies, the molecular
mechanisms of biological phase transition have attracted much
attention, in particular, on the different genotypes related to
specific phase but less of focus on the cascade of genes’ functions
during the phase change. However, it is a fundamental but
important mission to track the temporal characteristics of a
genetic system during specific phase transition or process, which
can offer clues for understanding life and advancing its quality.
By overcoming the hurdles of traditional time segmentation
and temporal biclustering methods, a causal process model
(CPM) in the present work is proposed to study the biological
phase transition in a systematic way: boundary gene estimation
for gene-specific segmentation and temporal block construction
for whole data division. After the computational validation on
synthetic data, CPM was used to analyze the well-known Yeast
cell cycle data to identify the time periods of six phases in two
cell cycles, and revealed phase/cycle related biological processes.
These primary results demonstrate that CPM is efficient com-
paring to traditional methods, and has potential to elucidate the
genetic mechanism with more complicated phase transitions.

I. INTRODUCTION

In the biological world, a phase transition can be defined
as the transformation of a genetic system from one phenotype
to another, where different phenotypes can map to distinct
genotypes. For example, cell cycle is known to have four
distinct phases: G1, S, G2 and M phases; cell differentiation
contains different stages like cell proliferation, growth arrest
and mature differentiation; and cancer development mainly
involves three steps as mutation, promotion and invasion.
Obviously, details of biological phase transition will offer
valuable clues for understanding life and advancing its quality.
Therefore, a fundamental but important mission is to track the
temporal characteristics of a genetic system during a particular
phase transition or biological process.

In previous studies, the molecular mechanism of biological
phase transition has attracted much attention. For instance, by
modulating the intracellular redox state and measuring cell
cycle progression, the redox cycle within the (mammalian)
mouse embryonic fibroblast cell cycle was found to maintain
the metabolic processes early in G1 and activate G1-regulatory
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proteins ahead of entry into S phase [1]. For a well known
agricultural pest as migratory locust with a phase transition
from the solitary to the gregarious, many down-regulated and
some up-regulated genes were found in various organs when
arriving to gregarious phase [2], which provides molecular
indicators and recovers genetic mechanisms of phase transition
in locusts. To determine the dormancy status of raspberry
buds whose developmental regulation is helpful to promote
the economic values of fruit and horticultural industries, a
few significant dormancy-related candidate genes for raspberry
buds had been identified by principal component analysis on
clones’ expressions [3]. Generally speaking, these research
works are mainly on the different genotypes under specific
phases. Despite of those progresses, however, there is much
less of focus on the cascade or sequence of genes’ functions
during the phase change.

In fact, one gene generally has multiple roles in biological
procedures but what role at a specific time is still unclear.
Thus, identifying a gene functional group which is composed
of cooperative genes in biological processes or pathways is
able to reveal the functional specificity of single genes. Nowa-
days, there is richer information on biological processes than
pathways [4], but the information on biological processes lacks
dynamic features compared with pathways [5]. That is why we
intend to identify the dynamic model of biological processes,
in particular on when and what a biological process will
be in cooperation during a phase transition. Meanwhile, the
newly produced temporal gene expression data indeed gives
us the opportunity to unveil mechanisms of dynamic processes
behind phenotype changes. Actually, the temporal dynamic
model has already shown its ability to detect the presence and
absence of stage/phase specific biological processes in Yeast
cell cycle and metabolic cycle [6]. But, this model limits to the
analysis on the time segmentation for all genes, and it simply
uses the replicated observations (at most three times due to
few data) to infer biological processes’ temporal coordination.
For these reasons, a bicluster-based temporal segmentation
method in this paper is developed to build a causal process
model (CPM) for identifying the temporal trace of biological
processes during genotype reorganizations.

The construction of the causal process model includes three
steps. First, it is to exhaust the specific biclusters with linear
patterns and assemble them into temporal blocks representing
a group of genes and their time segmentations. Then, a
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temporal block is refined to conduct functional enrichment
analysis. Finally, it is to infer the sequential or cascade (causal)
relation between temporal blocks by partial correlation among
two groups of genes. By numerical experiments, we obtained
several interesting results: on synthetic data, the ability of
gene-specific temporal segmentation is confirmed; comparing
with known CCC-biclustering method, the phase division of
CPM is more efficient; and in the analysis of phase-related
biological processes, the group of genes actually displays
corresponding functional enrichment in different phases. All
these findings demonstrate that CPM indeed has potential to
unveil the genetic mechanism behind more complicated phase
transitions.

II. METHOD

A. Causal process model: temporal block based on biclusters’
assembler

Unlike traditional time segmentation methods requiring the
same division on a time period for all genes [6], the gene-
specific time segmentation is considered in the present work.
That means, for different genes or dissimilar gene groups, they
can have different corresponding time segmentations based on
their expressions. This is why the biclustering technologies
[7], [8], which can group genes and conditions simultaneously,
are adopted. However, as discussed in the study of temporal
dynamic model [6], the art-of-state CCC-biclustering method
[9] has the weakness that it usually cannot cover all/most genes
and time points. To overcome this problem, an in-house biclus-
tering method (noted as EBB: Error-Bounded Biclustering,
and this algorithm is under another publication) is used to
enumerate so-called error-bounded linear patterns (such linear
pattern, as traditional shifting pattern and scaling pattern [8],
can model a group of genes having similar expression change
tendency) and assemble them into proposed temporal blocks
by the estimation of following defined boundary genes.

The brief framework of EBB includes three main steps:
(1) discretizing the raw data matrix to some 0-1 matrix by
a referred element and the given error bound; (2) building a
suffix tree based on 0-1 sequences encoded by rows in the
above 0-1 matrix; (3) identifying the deepest right-only node
in the suffix tree as a potential bicluster with error-bounded
linear pattern. In fact, CCC-biclustering is also an exhaustive
method [9]. But it adopts a significant trend filtering to handle
with the data pre-procession and cannot guarantee to find all
potential scaling patterns/linear patterns. These methodology
constraints lead to loss of most low-signal patterns and some
important kinds of expression patterns (e.g. linear patterns),
which prohibit CCC-biclustering to explore the whole data.
On the other hand, the suggested EBB method seeks linear
patterns covering traditional shifting/scaling patterns [8] so
that it can identify all interesting expression patterns in theory
currently. Besides, EBB can also keep low-varying signals as
many as possible because it uses the error bound but not the
tendency bound to discrete the raw data.

As well known to us, biclusters represent similar expression
behaviors of a group of genes at the same time points. How-

ever, our proposed temporal block gathers the cooperative ex-
pression behaviors during a specific time period. Qualitatively
speaking, temporal block points to a kind of data sub-matrix
in the original data to cover the complete biclusters as many
as possible but split the known biclusters as few as possible.
According to the following concepts and definitions, the genes
on so-called temporal boundary are used to divide the whole
data matrix into different matrices named as temporal blocks.

Definition 1 (Boundary gene and set): Given a data matrix
D = {dm,n}m∈I,n∈J and its a set of gene expression patterns
as biclusters {Pi = {(Gi, Ti)|Gi ⊆ I, Ti ⊆ J}}K

i=1, a gene g
in I is on the temporal boundary at time point t only when
its R value is no less than one, where the R is calculated as
formula (1). And all boundary genes at every time point consist
of a boundary set {BG(t) = {g|R(g, t) ≥ 1, g ∈ I}}t∈J .

R(g, t) =
|{Ti|g ∈ Gi, t = minτ∈Ti τ}|max(1, |{τ |τ ∈ J, τ < t}|)

|{Ti|g ∈ Gi, t ∈ Ti, t �= minτ∈Ti τ}|
(1)

Definition 2 (Temporal block): Given a matrix data D =
{dm,n}m∈I,n∈J and its pattern supervised boundary set BG,
the temporal block Bi = {(Gi, Ti)|Gi ⊆ I, Ti ⊆ J} should
satisfy following constraints.
(a) ∀g ∈ Gi, g ∈ BG(minτ∈Ti τ)
(b) ∀g ∈ Gi, g ∈ I − BG(minτ∈Ti τ − 1)

or minτ∈Ti τ = minτ∈J τ
(c) ∀g ∈ Gi, g ∈ I − BG(maxτ∈Ti τ)

or maxτ∈Ti τ = maxτ∈J τ
(d) ∀g ∈ Gi, g ∈ BG(maxτ∈Ti τ + 1)

or maxτ∈Ti τ = maxτ∈J τ
(e) ∀G ⊆ Gi, T ⊂ Ti, (G, T ) does not satisfy constraints (a)-
(d).
(f) ∀G ⊆ I − Gi, T = Ti, (G, T ) does not satisfy constraints
(a)-(d).

Some additional comparisons between the proposed tempo-
ral block and traditional bicluster will be discussed in the next
section.

B. Causal process model: expansion of temporal block for
functional enrichment analysis

Like the temporal segmentation, CPM gives a non-
overlapping division on the whole data. That means one gene
within one time point can not belong to different temporal
blocks, so that, the maximal property of temporal blocks
is not always guaranteed in CPM. Using Fig. 1 to be an
example, {(g1, g2, g3, g4, g5, g6)} have coherent expression on
time points {(t3, t4, t5, t6)}. In order to reflect the different
gene reorganization events happening on time points t2 and t3,
these genes are divided into two temporal blocks during the co-
expression period. This is just the over-division phenomenon
in biclustering study which can supply a multi-granularity
model for overlapping patterns [10]. When analyzing func-
tional enrichment on temporal blocks, the over-divided genes
should be gathered again. This can be easily realized by the
expansion of temporal blocks.
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Fig. 1. Illustration of temporal blocks based on estimated boundary genes

Definition 3 (Expanded temporal block): Given a data ma-
trix D = {dm,n}m∈I,n∈J and its a temporal block Bi =
{Gi, Ti|Gi ⊆ I, Ti ⊆ J}, the corresponding expanded tem-
poral block B∗

i = {G∗
i , T

∗
i |G∗

i ⊆ I, G∗
i ⊇ Gi, T

∗
i = Ti}

satisfies: ∀x ∈ G∗
i , ∃y ∈ Gi, s.t.Cx,y ≥ p. Where, Cx,y rep-

resents the Pearson coefficient correlation between expression
profiles of two genes during the time period T ∗

i , and p is a
threshold with a default value as 0.8.

Thus, the temporal blocks are useful to give a global scheme
of the data division, and the expanded temporal blocks are
suitable to reflect the local property of large data.

C. Causal process model: temporal block network construc-
tion based on partial correlation

In order to extract the cascade of temporal blocks repre-
senting the order of biological processes, there is a need to
build a network with direction among different blocks whose
qualitative connections adopt the partial correlation as the
following definitions [11].

Definition 4 (Partial correlation): Given three gene expres-
sion profiles or vectors X ,Y and Z , the partial correlation
between X and Y under condition Z is calculated as:

PR(X, Y |Z) =
CX,Y − CX,ZCY,Z√
1 − C2

X,Z

√
1 − C2

Y,Z

(2)

Where C.,. represents the Pearson coefficient correlation.
Definition 5 (Link strength between temporal blocks):

Given two temporal blocks B1 = (G1, T1) and B2 = (G2, T2),
if minτ∈T1 τ ≤ minτ∈T2 τ ≤ maxτ∈T1 τ + 1, these two
blocks have a link with direction from B1 to B2. The link
strength between their referred gene expression profiles in the
time period [minτ∈T1 τ, min (maxτ∈T1 τ, maxτ∈T2 τ)] can be
calculated as:

LS(B1, B2) =

∑
X∈G1

maxY ∈G2(minZ∈G2,Z �=X,Y |PR(X, Y |Z)|)
|G1|

(3)

This strength measurement indicates the potential partial re-
lation from genes in a source block B1 to genes in a target
block B2. It requires that the gene X in a source can directly
interact with gene Y in a target, or be indirectly related to Y
without the conduction from other target genes.

Based on the links (edges) with strengths (weights) among
temporal blocks (nodes), the temporal block network (TBN)
is prepared for deep analysis of dynamic biological processes.

III. RESULT AND DISCUSSION

Ahead of the discussion on experimental results, some
additional characteristics of proposed temporal blocks com-
paring with traditional biclusters are illustrated as follows.
Due to the module-in-focus property of biclustering, biclusters
always have overlap with each other and have less size than
the original data [9]. The redundancy elimination of those
overlapping biclusters is still a relevant and open question in
the study of biclustering. In the present work, in order to obtain
a division of the original data, the temporal blocks instead of
biclusters are used to build the dynamic model and constructed
by boundary gene estimation, which suffers few effects from
possible bicluster redundancy according to the principles of
temporal block construction. Noted, temporal block is not
a traditional bicluster pattern but a bicluster assembler. In
other words, it does not represent the coherent expression
solely as a bicluster but the similar expression pattern change
events (constraint (a)) as the concept of gene reorganization
across the neighbouring time windows [6]. As illustrated in the
constraints (b), (c) and (d), temporal block can tolerate the
potential disorder period which permits the boundary genes
present at continuous time points when block begins. It can
also accept the asynchronous ending period which lets those
genes do not have to be on temporal boundary when block
ends or they even do not belong to any original bicluster
pattern yet. These advantages of temporal block are shown
in details as above Fig. 1. In the matrix view (with synthetic
R values) of this figure, the element in red represents its
gene (row) is on the temporal boundary at its time point
(column); the element in blue means the gene is not on the
temporal boundary but at the starting time point of a few
biclusters; the element in orange points the gene is not at
the starting time point of any biclusters yet. Clearly, in Fig. 1,
the temporal block {(g5, g6), (t3, t4, t5, t6)} is a standard one,
while the temporal block {(g1, g2, g3, g4), (t2, t3, t4, t5, t6)}
covers a disorder period as genes (g1, g2, g3) at time points
(t2, t3) and an asynchronous ending period as genes (g3, g4)
at time points (t5, t6). Constraints (e) and (f) just guarantee
the completeness of a temporal block.

Besides, the time cost of CPM is mainly for the bicluster
mining of temporal block construction, which is similar to
CCC-biclustering with linear time complexity [9].

A. Validation of temporal segmentation by testing on synthetic
data

First of all, we analyzed CPM on a synthetic data in
a simple but typical strategy as previous studies. It is to
produce a random data matrix with 10 rows and 15 columns.
Five predefined blocks or patterns with five genes and four
continuous time points are embedded into such matrix. As the
recovering patterns in above synthetic data are perfect, we used
a strict error bound as 0.0001 and minimum bicluster size as
3*3,3*4,4*3,4*4 respectively to run CPM method (hereafter,
the annotation x*y points one bicluster contains at least x
genes and y time points). Under different parameter settings,
the divisions with temporal blocks on the whole synthetic data
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Fig. 2. The temporal blocks on the synthetic data according to CPM with
different parameter settings

are shown in Fig. 2, where one temporal block is surrounded
by a yellow box. We should emphasize two points on these
results. One is, for the effect of minimum bicluster size setting,
the biclusters with shorter time period will lead to more sub
blocks due to over-division (3*3 in Fig. 2 (A) and 4*3 in Fig. 2
(C)) than those with longer time period (3*4 in Fig. 2 (B) and
4*4 in Fig. 2 (D)), but all blocks are still reasonable. The other
is, according to the proposed design principles, each temporal
block can cover all time points of a predefined pattern and
some asynchronous ending period (e.g. cases shown in Fig. 2),
in order to tolerate the noise/error and divide the whole data
in a unified way. All in all, CPM can simultaneously group
genes and find gene-specific time divisions, which is always
not achievable by traditional time segmentation methods. And
it can further split the whole data matrix into different blocks
which is disregarded in previous biclustering studies.

B. Validation of phase description by comparing with CCC-
biclustering based method

Next, we analyzed CPM for the Yeast Cell Cycle of α-factor
synchronization experiment of Spellman et al. [6], [12]. This
dataset comprises two cell cycles, and each cell cycle contains
three phases as M/G1, G1&S, and G2&M [6]. Every phase
crosses three time points in the experiment with a constant
time interval as 7 minutes. After using one-way ANOVA [13]
to select genes (Setting the number of sample (time point)
groups to be six with prior knowledge in six phases of two
cell cycles, and the P -value to be based on the F-distribution

Fig. 3. Statistic view of boundary genes based on CPM with different
parameter settings

with significant threshold as 0.05), remaining data noted as
YCC with 730 genes and 18 time points was used for further
analysis. Again, we used different error bounds in {0.05,
0.1, 0.15, 0.2, 0.25} and minimum bicluster size as 10*5
(experience values in previous study) to build CPMs on YCC
data for extensive evaluation.

As proposed, the boundary genes can be used to track the
role-change events of a group of genes, and their number
would increase greatly at a time point around the alternation
of phases [6]. Due to the need of covering the possible
disorder period, a few boundary genes are not effective on
the block construction and others are just refined boundary
genes locating at the left-end (starting time point) of final
temporal blocks. According to the statistic of temporal blocks
and their depending boundary genes, Fig. 3 shows two kinds
of distributions of boundary gene numbers under different
CPM parameter settings, where the dotted line represents
the distribution of original boundary genes and the solid
line represents the distribution of refined boundary genes.
Obviously, the distributions of numbers of refined boundary
genes unveil more convincible phase related characteristics
than those of original boundary genes so that the temporal
block construction is indeed reasonable and boundary genes
just point the refined ones in the following discussions. When
the error bound is strictly set to 0.05, the peaks of distributions
of boundary gene numbers always locate at the middle time of
each phase when genes try to maintain their status of steady
coordination (Noted, the strictest parameter setting as 0.01
results no bicluster output). When error bound is suitably set
to 0.1, the peaks of distributions of boundary gene numbers
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Fig. 4. Statistic view of boundary genes based on CCC-biclustering based
method with different parameter settings

always locate at the time point of phase transition because
genes usually start cooperation at this time and temporal block
can cover the potential beginning disorder period. While, when
error bound is set to 0.15 or even larger values, distributions
of boundary gene numbers can not keep on their correlations
with phases because many noises are introduced to mix up
the genes on and not on temporal boundaries. Therefore,
CPM can directly use the distributions of boundary gene
numbers to track the critical time points of phase transition,
whose dependent parameter setting will get benefits both from
experience of data analyzers and pattern quality estimation of
biclustering researches.

In order to further support the proposed (EBB)bicluster-
based segmentation method is actually efficient comparing
with other kinds of bicluster-based methods, we used temporal
biclusters produced by CCC-biclustering [9] (under five differ-
ent parameter settings and 1.0 is the default value) to assemble
temporal blocks and re-analyze the relation between devel-
opmental stages and distribution of boundary gene numbers.
Compared with Fig. 3, the results shown in Fig. 4 illustrate
CPM is more accurate than traditional temporal biclustering
based method. While, the differences between bicluster-based
segmentation and traditional temporal segmentation are not
discussed more here because they belong to two distinct
methodology categories like biclustering and clustering.

C. Validation of phase-related biological process by func-
tional enrichment analysis

Finally, we chosen the temporal blocks obtained under the
parameter setting as 0.1 to do functional enrichment analysis.
In fact, based on the single phase related temporal block, we
might find the similar results as previous dynamic temporal
model [6]. In this paper, the multiple phases related temporal
blocks are in focus because the differences between two cell
cycles after α factor handling were disregarded in previous
study [6]. The 1st cell cycle related temporal block TB1

covers the former three phases with time points 0-8 and
has 12 genes expanded to 432 ones. While, the 2nd cell
cycle related temporal block TB2 covers the latter three
phases with time points 9-17 and has 42 genes expanded to
400 ones. After functional enrichment analysis [14] on those

TABLE I
BIOLOGICAL PROCESSES ENRICHED IN TWO CELL CYCLES

Biological process Cell cycle I Cell cycle II
mannose metabolic process

√
external encapsulating structure organization

√ √
cell wall organization or biogenesis

√ √
cell wall organization

√ √
cellular cell wall organization or biogenesis

√ √
cellular cell wall organization

√ √
cytokinetic cell separation

√ √
cytokinesis, completion of separation

√ √
cytokinesis

√ √
transition metal ion transport

√
iron ion transport

√
chromatin assembly

√ √
nucleosome assembly

√ √
DNA conformation change

√
DNA packaging

√
chromatin assembly or disassembly

√

TABLE II
BIOLOGICAL PATHWAYS ENRICHED IN TWO CELL CYCLES

Pathway Cell cycle I Cell cycle II
Amino sugar and nucleotide sugar metabolism

√ √
Steroid biosynthesis

√
Fructose and mannose metabolism

√
Regulation of beta-cell development

√
Regulation of gene expression in beta cells

√

Fig. 5. The co-expression networks related to genes and cell cycles

two expanded gene sets, the significant phase(cycle)-related
biological processes and pathways are listed in Table I and II.
Obviously, the 1st cell cycle related genes and 2nd cell cycle
related genes have shown several different biological processes
annotated in GO [15], and the 1st cell cycle related genes
are frequently observed in biological pathways annotated in
KEGG and Reactome [16], [17]. Therefore the two cell cycles
can be just thought as two super-phases with distinct genetic
properties, and this viewpoint will be helpful to understand the
complicated biological procedure across multiple cell cycles.

Furthermore, the co-expression network [18] was also used
to reflect the cell cycle specificity on the structures of protein
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interaction network (PIN). Given a group of genes and their
expression profiles, we obtained these genes/proteins’ interac-
tions from STRING database [19]; based on their expression
profiles, we calculated the correlation of two proteins with
an interaction; again, based on the rank from high correlation
value to low value, the top-100 interactions and their proteins
consist of a co-expression network.

Thus, we used the genes in TB1 and TB2 with their
expression profiles during two cell cycles to build four co-
expression networks. Fig. 5(A) displays the global network of
such four cell cycle specific networks, where several possible
complex structures or interaction motifs exist. Fig. 5(B) and
(C) show the networks of TB1 genes in two cell cycles
respectively, where motif P2 present in the first cell cycle
but absent in the next cell cycle. Fig. 5(D) and (E) show the
networks of TB2 genes in two cell cycles correspondingly,
where motif P1 unobserved in former cell cycle significantly
appear in the following cell cycle. Interestingly, these protein
interaction motifs can be thought as the dynamic markers
(temporal traces) of cell cycles in a transition. And the
proposed temporal blocks within causal process model are
indeed useful to efficiently uncover such kind of molecular
basis of a genetic system transition.

Of course, CPM can give the link strength between above
biological processes related to two cell cycles, but the actual
biological mechanism behind such candidate causal processes
needs further study.

IV. CONCLUSION

Overcoming the hurdles of traditional time segmentation
and temporal biclustering methods, the causal process model
was proposed to study the biological phase transitions in
a systematic way. This novel method can not only detect
potential phase transitions in real biological systems but also
identify the candidate temporal traces of biological processes
during the transformation of a genetic system.
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