
Discriminative Random Field Approach to
Prediction of Protein Residue Contacts

Mayumi Kamada∗, Morihiro Hayashida∗, Jiangning Song†‡ and Tatsuya Akutsu∗
∗Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

Email: {kamada, morihiro, takutsu}@kuicr.kyoto-u.ac.jp
†Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia

Email: Jiangning.Song@monash.edu
‡Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

Abstract—Understanding of interactions of proteins is impor-
tant to reveal networks and functions of molecules. Many investi-
gations have been conducted to analyze interactions and contacts
between residues. It is supported that residues at interacting sites
have co-evolved with those at the corresponding residues in the
partner protein to keep the interactions between the proteins.
Therefore, mutual information (MI) between residues calculated
from multiple sequence alignments of homologous proteins is con-
sidered to be useful for identifying contact residues in interacting
proteins. In our previous work, we proposed a prediction method
for protein-protein interactions using mutual information and
conditional random fields (CRFs), and confirmed its usefulness.
The discriminative random field (DRF) is a special type of CRFs,
and can recognize some specific characteristic regions in an
image. Since the matrix consisted of mutual information between
residues in two interacting proteins can be regarded as an image,
we propose a prediction method for protein residue contacts using
DRF models with mutual information. To validate our method,
we perform computational experiments for several interactions
between Pfam domains. The results suggest that the proposed
DRF-based method with MI is useful for predicting protein
residue contacts compared with that using the corresponding
Markov random field (MRF) model.

I. INTRODUCTION

Analyses of molecular recognition and specific interactions
of proteins are important for understanding construction and
evolution of molecular networks and cellular systems. Sev-
eral investigations of amino acid residues of proteins have
been conducted to reveal interactions and contacts between
residues [1]–[4]. In evolutionary processes of organisms, it
can be considered that protein residues at important sites for
interactions have been simultaneously mutated to keep their
interactions. Otherwise, such mutated proteins might lose the
interactions, and the individual would receive selection pres-
sure. In fact, it was confirmed from comparison of putatively
orthologous proteins between S. cerevisiae and C. elegans that
interacting proteins evolve at similar evolutionary rates [5].
It means that interacting residues have been mutated at the
same time. Therefore, mutual information between residues is
useful for predicting interacting residues, which is a quantity
representing dependent relationship between two residues, and
is calculated from the distribution of amino acids in multiple
sequence alignments for homologous proteins.

Several methods for predicting interactions of protein
residues have been developed based on the idea of coevo-

lution of interacting residues. Little and Chen proposed a
normalized mutual information, called ZRes, to remove the
biases associated with mutual information, and analyzed the
PDZ domain and chorismate synthase family [6]. Weigt et
al. proposed Direct Information (DI) that is an improvement
of mutual information, and estimated direct residue contacts
between sensor kinase and response regulator proteins from
the DI calculated by using message passing [4]. Burger and
van Nimwegen developed a prediction method based on a
Bayesian network method by constructing a dependence tree
where a node corresponds to a position of protein sequence
alignments [2]. However, predicting protein residue contacts is
one of challenging tasks, and it is unknown whether or not the
above methods can be applied to various protein pairs. Cheng
and Baldi proposed the prediction method using support vector
machines for finding contact residues inside of a protein for
fold recognition and 3-dimensional structure prediction [7].

In the field of image analysis, Markov random fields (MRFs)
have been well studied, for instance, for texture segmentation,
a deformable contour model, called EigenSnake, and matching
to multiple overlapping objects [8]–[10]. Also in the field of
bioinformatics, MRFs have been used for protein function
prediction from protein-protein interaction networks [11], [12].
In our previous work, we modeled protein-protein interactions
based on domain-domain interactions using conditional ran-
dom fields (CRFs), and developed prediction methods, which
outperformed existing methods based on probabilistic models
with domains [13]. Kumar and Hebert proposed discriminative
random fields (DRFs) to model spatial interactions in images
based on CRFs [14]. They argued that DRFs have several ad-
vantages compared to conventional MRFs. For instance, DRFs
allow to relax the assumption of conditional independence of
observed data, and have higher discriminative ability than that
of MRFs. The matrix that consists of all mutual information
between two positions in multiple sequence alignments can
be considered as an image. Therefore, in this paper, we make
use of mutual information, and propose a DRF-based method
for predicting residue-residue interactions. Furthermore, we
perform computational experiments, and the results suggest
that the DRF-based method is useful compared with that using
the corresponding MRF model.
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II. METHOD

In this section, we propose a discriminative random field
(DRF)-based method for predicting contact residues. The
input data are two amino acid sequences. Then, homologous
sequences are collected for each sequence, mutual information
between two residues is calculated, and the probability that
two residues interact with each other is calculated according to
our proposed DRF model. For training parameters of the DRF
model, several pairs of protein sequences and the interacting
residues are given.

A. Mutual Information

In our proposed method, mutual information for the distri-
bution of amino acids at two positions of protein sequence
alignments is one of important inputs. In this section, we
briefly review mutual information for such distributions.

There are several types of residue-residue interactions,
interactions between proteins having the same amino acid
sequence, homodimers, and interactions between different pro-
teins, heterodimers. Fig. 1 shows an illustration on calculation
of mutual information between two positions in multiple
sequence alignments. Suppose that protein sequence A and the
information of interactions of residues in the homodimer are
obtained. Then, several homologous sequences for sequence
A are collected, and a multiple alignment is calculated in
some adequate way. After that, gaps added to sequence A
by the calculation of the alignment are deleted because only
residues in sequence A are the target of our prediction of
interactions. The length of the multiple alignment becomes
the length of sequence A. The left figure in Fig. 1 shows
such a multiple alignment, where the sequence at the first
line denotes sequence A. Let A be the set of 20 amino acids
and 1 character that represents undetermined amino acids. Let
pi(a), pij(a, b) be the observed frequency of amino acid a ∈ A
at position i and that of amino acids a, b ∈ A at positions i
and j, respectively, where the frequency is divided by the total
number. Then, mutual information mij between two positions
i and j is calculated as follows.

mij = Hi + Hj − Hij , (1)

where Hi and Hj denote the marginal entropies
at positions i and j, respectively, that is, Hi =
−∑

a∈A pi(a) log pi(a), and Hij denotes the joint entropy
Hij = −∑

a∈A
∑

b∈A pij(a, b) log pij(a, b).
In a similar way, mutual information mij for a heterodimer

is calculated as well as Eq. (1), where the joint frequency
pij(a, b) between positions i and j for amino acids a and
b is calculated after each sequence in a multiple alignment
is assigned to a sequence in another alignment according to
organisms that the two sequences belong to (see Fig. 1).

Fig. 2 shows an example of the matrix of mutual information
between two sequences, where in fact, both sequences A
and B are Pfam domains of PF05269 with length of 91,
which is contained in regulatory protein CII, and we used
the homodimer in computational experiments. There are 194
pairs of interacting residues among total 4,095 residue pairs

ETLCGSELVDTLQFVCDDRG

QHLCGSHLVDALY.LVCGP.

..YCGRHLARTLA.NLCWEA

AQETEVADFAFKDHAEVI

.KSAKENE.EYPFKDQTE
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AEDNESQDDESIGIN.EV

alignment for sequence A

i j

alignment for sequence B
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Fig. 1. Illustration on calculation of mutual information between two
positions in multiple alignments for sequences A and B. Left) mutual
information between positions i and j in a multiple alignment for sequence
A. Right) mutual information between positions i in a multiple alignment for
sequences A and j in a multiple alignment for sequence B, where sequences
belonging to the same organism are connected. Sequences A and B are shown
at the first line of alignments, and respectively.
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Fig. 2. Example of matrix of mutual information between two residues,
where both sequences A and B are Pfam domains of PF05269 with length of
91, and hydropathy classification of amino acids was used for the calculation
of MI. The brighter the color of (i, j) is, the higher their mutual information
is.

between the domains, and 25 homologous protein sequences
in Pfam database were used for the calculation of mutual
information between residues of PF05269. The matrix can
be considered as an image. Therefore, we make use of an
image processing technique, discriminative random fields, for
prediction of interacting residues.

B. Discriminative Random Field Models for Residue-Residue
Interactions

In this section, we describe the discriminative random field
(DRF) proposed by Kumar and Hebert [14], and propose DRF
models for residue-residue interactions.

The discriminative random field was developed based on
the conditional random field (CRF) proposed by Lafferty et
al. [15]. Let G(V, E) be a graph with a set of vertices V
and a set of edges E, where each vertex is related with a
random variable xs, and ys is observed from the corresponding
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vertex. Then, (x,y) is a conditional random field if the random
variables xs follow the Markov property under the conditions
ys according to the graph G, that is, P (xs|x{t∈V |t6=s},y) =
P (xs|xNs , y), where Ns denotes the set of vertices adjacent
to the vertex s in the graph G. As well as CRFs, DRFs require
P (x|y) > 0 for all x, and are represented by the following
formula

P (xs|xNs ,y) =
1

Zs
exp {−Us(x, y)} , (2)

where Us(x, y) is a potential function concerning the ver-
tex s, and Zs is the normalization constant defined by∑

xs
exp {−Us(x, y)}. In the framework of DRFs, it is as-

sumed that only up to pairwise clique potentials are nonzero,
and the potential function is defined as follows.

Us(x, y) = αA(xs, y) + β
∑

t∈Ns

I(xs, xt, y), (3)

where A(xs, y) and I(xs, xt, y) are the unary and binary
potential functions, and called the association potential and
the interaction potential, respectively, each random variable
xs takes 1 or −1, α ∈ {0, 1}, and β is a variable. Let w
and v be parameter vectors, and fs and gst be vector-valued
functions that map observations y to feature vectors with the
same size as parameter vectors. Then, the association potential
A(xs, y) can be considered as a gain obtained only from the
vertex s and the observations y, and is defined as

A(xs, y) = − log
(
σ

(
xsw

T fs(y)
))

, (4)

where σ(x) is the logistic function defined by 1
1+e−x , and

wT denotes the transpose of w. It means that the DRF
model includes generalized linear models (GLM), where other
functions such as the probit function can be used as the
link function of the DRF. On the other hand, the interaction
potential I(xs, xt,y) can be considered as a gain obtained
from the relationship between vertices s and t, and is defined
as

I1(xs, xt, y) = Kxsxt

+(1 − K)
(
2σ

(
xsxtv

T gst(y)
)

− 1
)
, (5)

where 0 ≤ K ≤ 1, or simply defined as

I2(xs, xt, y) = xsxtv
T gst(y). (6)

It should be noted that the set of parameters θ in DRF models
consists of w, v, β, and K.

In order to determine a DRF model, we must design
vector-valued functions fs and gst. Kumar and Hebert used
histograms of luminance values (y) in neighbor pixels at some
scales for recognition of man-made structures in an image
[14]. For our purpose, we use random variables rij(∈ {1, −1})
that represent residue contacts instead of xs, where rij = 1
means residues between position i and j interact with each
other, otherwise rij = −1. Here, the set of vertices V consists
of pairs of positions (i, j), and we use Nij = {(i−1, j), (i, j−
1), (i, j + 1), (i + 1, j)} as adjacent vertices to (i, j) (see
Fig. 3). Furthermore, we use mutual information mij between

i, j
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i+1, j

i, j+1i, j-1

ii-1 i+1

jj-1 j+1

sequence A
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Fig. 3. Adjacent residue pairs for (i, j).

ri,jri,j-1 ri,j+1

ri-1,j

ri+1,j

mi,j mi,j+1mi,j-1

mi-1,j

mi+1,j

Fig. 4. Relationship between mutual information mij and random variable
rij in the DRF framework.

positions i and j as observations y. Then, we define vector-
valued functions f ij and gij,kl that map m to feature vectors
as follows.

f ij(m) =
(
1, mi,j ,

1

2
(mi,j−1 + mi,j+1),

1

2
(mi−1,j + mi+1,j)

)T

, (7)

g
(h)
ij,kl(m) =

{
1 (h = 1)

|f (h)
ij − f

(h)
kl | (h = 2, 3, 4)

, (8)

where g(h) denotes the h-th element of vector g, and |x|
denotes the absolute value of x. The relationship between
mutual information mij and random variable rij is represented
in the DRF framework as Fig. 4, that is, rij is related with
multiple observations mij . It should be noted that adjacent
vertices used in feature vectors are allowed to be different
from Nij . Therefore, we also consider the following feature
vector,

f ′
ij(m) =

(
1,mi,j ,

1

2
(mi,j−1 + mi,j+1),

1

2
(mi−1,j + mi+1,j),

1

2
(mi−1,j−1 + mi+1,j+1),

1

2
(mi−1,j+1 + mi+1,j−1)

)T

. (9)

On the other hand, in the MRF framework, rij is related
with only an observation mij . We define the following feature
vector for comparison of random fields.

f0
ij(m) =

(
1,mi,j

)T

(10)

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

287 Zhuhai, China, September 2–4, 2011



C. Parameter Estimation

We estimate parameters θ = {w, v, β, K} by maximizing
pseudo-likelihood function as in [14]. Suppose that N pairs
of multiple alignments for protein sequences and interacting
residues r(n)(n = 1, . . . , N) for each pair of proteins are
given. We calculate mutual information m(n) for each pair.
Then, the logarithm of pseudo-likelihood function is given as

L(θ) = log

N∏

n=1

∏

i

∏

j

P (r
(n)
ij |r(n)

Nij
,m(n), θ) (11)

=

N∑

n=1

∑

i

∑

j

{
−Uij(r

(n))

− log
∑

r
(n)
ij

∈{1,−1}

exp
{

−Uij(r
(n))

}}
.(12)

In order to maximize L(θ), we use the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [16] method, which is one of quasi-
Newton methods that uses partial differentials and approxi-
mates the Hessian matrix by some efficient method. For that
purpose, by partially differentiating L(θ) with respect to each
parameter, we have

∂L(θ)

∂w
=

∑

n

∑

i

∑

j

{
−∂Uij(r

(n))

∂w

+
∑

r
(n)
ij

P (r
(n)
ij |r(n)

Nij
, m(n), θ)

∂Uij(r
(n))

∂w

}
, (13)

where

∂Uij(r
(n))

∂w
= −ασ

(
−r

(n)
ij wT f ij

)
r
(n)
ij f ij . (14)

In a similar way, for β, we have

∂Uij(r
(n))

∂β
=

∑

(k,l)∈Nij

I(r
(n)
ij , r

(n)
kl , m). (15)

If I1 is used as the interaction potential, we have

∂Uij(r
(n))

∂v
= 2β(1 − K)

∑

(k,l)∈Nij

σ
(
−r

(n)
ij r

(n)
kl vT gij,kl

)

r
(n)
ij r

(n)
kl gij,kl, (16)

∂Uij(r
(n))

∂K
= β

∑

(k,l)∈Nij

(
r
(n)
ij r

(n)
kl

−2σ
(
r
(n)
ij r

(n)
kl vT gij,kl

)
+ 1

)
. (17)

If I2 is used, we have ∂Uij(r(n))
∂v =

β
∑

(k,l)∈Nij
r
(n)
ij r

(n)
kl gij,kl.

D. Contact Decision

After estimating parameters, for new pairs of residues, we
decide whether or not each pair interacts with each other. For
that purpose, we use Iterated Conditional Modes (ICM) [17],

TABLE I
CLASSIFICATION OF AMINO ACIDS BASED ON HYDROPATHY AND

CHEMICAL STRUCTURE.

Hydropathy Amino acid
hydrophobic G,A,P,V,L,I,M,W,E
hydrophilic R,N,D,E,Q,H,K,S,T,C,Y
Chemical structure Amino acid
only hydrogen atom G
hydroxyl group S,T
sulfur atom C,M
aliphatic hydrocarbon A,V,L,I,P
carboxylic structure D,E
amidated carboxyl group N,Q
nitrogen atom K,R,H
aromatic ring F,Y,W

TABLE II
DETAILS OF 12 INTERACTING DOMAIN PAIRS FOR EVALUATION.

sequence A sequence B
PDB acc Pfam # acc Pfam #
1ylf Q81EX1 PF02082 125 Q81EX1 PF02082 125

1mkm Q9WXS0 PF09339 88 Q9WXS0 PF09339 88
1zpq P03042 PF05269 91 P03042 PF05269 91
1r1v O85142 PF01022 47 O85142 PF01022 47
1l3l P33905 PF00196 58 P33905 PF00196 58
1rio P03034 PF01381 56 Q9EZJ8 PF04545 54
1zzb Q56185 PF01381 56 Q56185 PF01381 56
1z7u Q838C3 PF01638 91 Q838C3 PF01638 91
1s7o P67253 PF04297 101 P67253 PF04297 101
1hw2 P0A8V6 PF00392 64 P0A8V6 PF00392 64
1xcb Q9X2V5 PF06971 50 Q9X2V5 PF06971 50
1b4a O31408 PF01316 70 O31408 PF01316 70

’acc’ denotes the accession number of the protein. ’#’ denotes the number of
residues.

which iteratively updates random variables rij ∈ {1, −1} until
each variable cannot be changed using the following.

r
(t+1)
ij = argmaxrij∈{1,−1}P (rij |r(t)

Nij
, m, θ), (18)

where r
(t)
ij denotes the value of random variable rij at step t.

III. COMPUTATIONAL EXPERIMENTS

A. Data and Implementation

To get protein residue interaction data, we used the files,
’int pfamA.txt’ and ’interaction.txt’, from Pfam database
(version 21.0) [18]. The former includes 6,079 interacting
domain pairs, and the latter includes information of interacting
residue pairs between domains. There were 26 interacting
domain pairs that both domains belong to CL0123 group,
which is called helix-turn-helix clan and contains a diverse
range of mostly DNA-binding domains including a helix-
turn-helix motif, and we selected 12 interacting domain pairs
at random from the pairs, (PF02082, PF02082), (PF09339,
PF09339), (PF05269, PF05269), (PF01022, PF01022),
(PF00196, PF00196), (PF01381, PF04545), (PF01381,
PF01381), (PF01638, PF01638), (PF04297, PF04297),
(PF00392, PF00392), (PF06971, PF06971), and (PF01316,
PF01316), where we excluded pairs that contain less than
2 interacting residues and contain less than 5 sequences
for multiple alignments. Table II shows the details of the
datasets. For each pair of domains, PDB ID [19] is shown,
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TABLE III
RESULTS ON AVERAGE AUC SCORES FOR TRAINING AND TEST DATASETS
USING MUTUAL INFORMATION FOR MRF MODEL WITH FEATURE VECTOR

f0
ij , DRF MODEL WITH f ij , AND DRF MODEL WITH f ′

ij .

Alphabet MRF (f0
ij ) DRF (f ij ) DRF (f ′

ij )
for training dataset
20 amino acids 0.671846 0.690184 0.704212
hydropathy 0.684646 0.72279 0.725438
chemical structure 0.668725 0.6983 0.720599
for test dataset
20 amino acids 0.629492 0.643685 0.621458
hydropathy 0.630355 0.637544 0.630765
chemical structure 0.62826 0.642325 0.624627

and for each domain included in the PDB ID, the accession
number of the protein containing the domain, Pfam ID, and
the number of residues are shown. Since each sequence
included from 47 to 125 residues and the number of residue
pairs was more than 47×47=2,209, it is considered to be
enough for estimating parameters. However, the number of
interacting residues (positive examples) is too few in a pair
of domains compared with that of non-interacting residues
(negative examples). Therefore, we selected uniformly at
random the same number of negative examples as that of
positive examples.

For the calculation of mutual information between residues,
we used multiple alignment data provided in the file ’Pfam-
A.full’ in Pfam database. For the calculation of marginal en-
tropies and joint entropies, we used three types of classification
of amino acids. One is not classified, that is, each group has a
distinct amino acid, and the number of groups is 20. Another
is hydropathy-based classification. It classifies 20 amino acids
into 2 groups, hydrophobic (G, A, P, V, L, I, M, W and E) and
hydrophilic amino acids (R, N, D, E, Q, H, K, S, T, C and
Y). The other is classification by chemical structures of amino
acids, which has eight groups. Table I shows the details for
hydropathy-based and chemical structure-based classification.

Furthermore, we calculated ZRes [6] from mutual informa-
tion, and we also used ZResi,j = Zi(j)Zj(i) instead of mi,j

for the feature vectors, where Zi(j) denotes the z-score for
Resi,j to Resi,∗, and Resi,j is obtained by taking the residual
of mi,j from mi,∗m∗,j after the linear least squares regression.

We used libLBFGS (version 1.10) with default parameters
to estimate the parameters θ, which is a C implementation of
the limited memory BFGS method [20], and is available on
the web page, http://www.chokkan.org/software/liblbfgs/.

B. Results

In order to evaluate the proposed DRF-based method, we
performed computational experiments using three types of
vector-valued functions f0

ij , f ij , and f ′
ij , and three types

of classification of amino acids, 20 amino acids, hydropathy-
based, and chemical structure-based classification. We per-
formed leave-one-out cross validation, where one dataset was
used for test and the remaining datasets were for training,
this process was repeated, and the number of repeated times
was the number of datasets, that is, 12. We calculated the

TABLE IV
RESULTS ON AVERAGE AUC SCORES FOR TRAINING AND TEST DATASETS
USING ZRES FOR MRF MODEL WITH FEATURE VECTOR f0

ij , DRF MODEL

WITH f ij , AND DRF MODEL WITH f ′
ij .

Alphabet MRF (f0
ij ) DRF (f ij ) DRF (f ′

ij )
for training dataset
20 amino acids 0.570207 0.604435 0.624169
hydropathy 0.480385 0.546194 0.543357
chemical structure 0.550335 0.620711 0.637602
for test dataset
20 amino acids 0.546399 0.572829 0.594989
hydropathy 0.503718 0.486512 0.501379
chemical structure 0.501243 0.569000 0.569988
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Fig. 5. Average ROC curves for training datasets using mutual information
and ZRes for DRF model with feature vector f ij .
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Fig. 6. Average ROC curves for test datasets using mutual information and
ZRes for DRF model with feature vector f ij .

conditional probabilities P (rij = 1|rNij , m, θ) and AUC
(Area Under ROC Curve) scores, and took the average.

First, we set α = 1 and β = 0. It means that DRF models
contained only the association potential A(rij , m). Tables III
and IV show the results on the average AUC scores for training
and test datasets using mutual information and ZRes for the
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MRF model with feature vector f0
ij , the DRF model with f ij ,

and the DRF model with f ′
ij , respectively. It should be noted

that only a small fraction of training datasets was used for the
parameter estimation of the models. We can see from these
tables that the average AUC scores using mutual information
for the feature vectors were better than those using ZRes.
Furthermore, the average AUC scores of the MRF model were
smaller than almost all those of the DRF models for training
and test dataset. It is considered because the MRF model can
use only an observation mij although DRFs can use multiple
observations. The average AUC scores of the DRF model with
f ′

ij were better than those of the DRF model with f ij for
training set, while for test set those of the DRF model with f ij

were better than those of the DRF model with f ′
ij . For training

datasets, the average AUC scores using mutual information
for the DRF models by the hydropathy-based classification
was better than those by others. For test datasets, the average
AUC score using mutual information for the DRF model with
f ij by 20 amino acids was better than those by others. The
average ROC (Receiver Operating Characteristic) curves for
training and test datasets using mutual information and ZRes
for the DRF model with f ij are shown in Figures 5 and
6. The average computation times of parameter estimation
using mutual information and ZRes were about 0.49 and 0.47
seconds, respectively. Although we added a heterodimer to the
datasets that consists of 11 homodimers and a heterodimer,
and performed similar experiments, the average AUC score
became smaller. It may suggest that the parameters of our DRF
models should be estimated for homodimers and heterodimers
independently.

Next, we set α = 0 and β = 1. It means that DRF
models contained only the interaction potential I(rij , rkl, m).
However, the BFGS method for parameter estimation did not
converge for the potentials I1 and I2. It can be considered
because colors of neighbor pixels are often similar to each
other, and the interaction potentials in DRFs were originally
developed for smoothing images. However, pairs of neighbor
residues are not always similar, that is, even if residues at
positions (i, j) interact, it might be difficult to determine
whether or not residues at (k, l) ∈ Nij interact. On the other
hand, it is considered from the results that the association
potential in DRFs is useful for predicting interacting residues,
and mutual information between neighbor residues is useful.

IV. CONCLUSION

We proposed a method for predicting protein residue con-
tacts using the discriminative random field proposed by Kumar
and Hebert, which is a special type of conditional random
fields and is able to recognize characteristic sub-images from
an image. In order to make use of DRFs, mutual infor-
mation between residues was given as observations in the
potential of DRFs, where mutual information was calculated
from multiple sequence alignments of homologous proteins.
To validate the proposed DRF-based method with mutual
information, we performed computational experiments using
leave-one-out cross validation and calculated the average AUC

scores. The results suggest that our proposed DRF-based
method with mutual information is useful for prediction of
protein residue contacts compared with that based on the
corresponding Markov random field model. It means that
mutual information between neighbor residues is useful for
the contact prediction. On the other hand, interaction potentials
were not useful because DRFs have been originally developed
for image analyses. The problem of predicting residue contacts
is one of difficult problems, and it cannot be said that the
prediction accuracy by our method was good. However, there
are some possibilities to improve our method, for instance,
the modification of the observation and the potential function.
We can use other observations than mutual information and
ZRes [6] from distributions of amino acids, for instance, Direct
Information (DI) [4], that are correlation values calculated in
different ways. In addition, we can introduce some parameters
with respect to each amino acid in the potential function that
represent properties for each amino acid because the results
imply that the number of parameters was not sufficient for
explaining protein residue contacts.
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