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Abstract—Mathematical models have been used to understand
the factors that govern infectious disease progression in viral
infections. Many HBV models were based on the basic virus
infection model with bilinear mass action incidence of virus
and the uninfected target cells introduced by Zeuzem et al.
and Nowak et al. But Lequan Min et al. have set up another
basic virus infection model with a standard incidence function.
In this paper, base on the standard mass action incidence,
an adefovir anti-HBV therapy model with time-delay immune
response were set up. The globally asymptotically stable analysis
of the infection-free equilibrium were given in the paper, for the
endemic equilibrium, simulation shows there exist a stable switch.
The simulation based on the clinical adefovir therapy data were
also given.

I. Introduction

Chronic hepatitis B caused by the hepatitis B virus(HBV)
remains a major global health problem. About 2 billion people
have been infected with the virus [1], with 5 million new cases
each year [2]. It is estimated conservatively that there are 350
million persistent carriers of HBV worldwide, 25% of whom
have chronic liver disease and cirrhosis, which could progress
to hepatocellular carcinoma[3].

The study of anti-HBV infection treatment may benefit
from the use of mathematical modelling. Several models have
been introduced for the understanding of the HBV dynamics
([4], [5], [6], [7], [8]). Among those models, the basic virus
infection model (BVIM) introduced by Zeuzem et al. [9] and
Nowak et al. [4] is widely used in the studies of virus infection
dynamics. The BVIM with three variables takes the form of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = λ − dx − βvx
ẏ = βvx − ay
v̇ = ky − μv

(1)

where x, y and v are numbers of uninfected (susceptible) cells,
infected cells, and free virus respectively. Uninfected cells are
assumed to be produced at the constant rate λ, die at the rate
of dx and become infected at the rate of βvx. Infected cells
are thus produced at the rate of βvx and are assumed to die
at the rate ay. Free virions are assumed to be produced from
infected cells at the rate of ky and are removed at the rate of μv.

This model can describe some aspects of the viral dynamics
in HBV infection.

Obviously the rate of infection in model (1) is bilinear in
the virus v and the uninfected target cells x, actual incidence
rates are probably not strictly linear in each variable over
the entire range of v and x. Clearly, model (1) has a basic
infection reproductive number of R0 = λβk/(adμ). Note that
R0 is proportional to λ/d (represents the number of total cells
of the liver), which implies that an individual with smaller liver
maybe more resistent to virus infections than an individual
with a larger one. Lequan Min et al [10] pointed that this
is not reasonable and gave another HBV model by using a
standard mass action incidence as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ − dx − βvx
x + y

ẏ =
βvx
x + y

− ay

v̇ = ky − μv
(2)

which the variables and parameters have the same meanings as
those in model (1). The basic infection reproductive number
of model (2) is R0 = βk/(aμ), which is independent of λ/d
and seems more reasonable.

It is currently widely accepted that HBV infection is non-
cytopathic. Note that the immune response after viral infection
is universal and necessary to eliminate or control the disease.
Antibodies, cytokines, natural killer cells, and T cells are
essential components of a normal immune response to a
virus. Infected hepatocytes are killed not by the virus but
by HBV-specific cytotoxic T lymphocytes (CTLs)[11], [12]
. It is believed that they are the main host immune factor
that limits the development of virus replication in vivo and
thus determines virus load([13], [14], [15]). Therefore, the
population dynamics of viral infection with CTL response has
been paid much attention in the last few decades.

There are several methods to describe the dynamics of CTL
during the HBV infection. Based on paper [11], Yongmei Su
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and Min et. al[16] discussed the following model:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ − dx − βvx
x + y

ẏ =
βvx
x + y

− ay − pye

v̇ = ky − μv
ė = cy − be

(3)

which e(t) is the number of CTLs, other parameters are the
same as model (1) and (2).

Time delays can not be ignored in models for immune re-
sponse. As shown in paper [17] and [18], antigenic stimulation
generating CTLs may need a period of time τ , i.e., the CTLs
response at time t may depend on the population of antigen
at a previous time t − τ .

Kaifa Wang[18] discussed an immune model with a time
delay of the immune response by making a quasi-steady-state
assumption: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = λ − dx − βvy
ẏ = βvy − ay − pye
ė = cy(t − τ) − be

(4)

The meaning of x, y, e are the same of those of model (3).
In this paper, based on model (3) and (4), we will discuss the
following HBV therapy delay immune models without making
a quasi-steady-state assumption:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ − dx − βvx
x + y

ẏ =
βvx
x + y

− ay − pye

v̇ = (k − k2)y − μv
ė = cy(t − τ) − be

(5)

which k2 means the therapy effect of adefovir dipivoxil and
k2 < k, other parameters are the same as above models. In the
following sections, we let k̄ = k − k2

This paper is organized as follows. In Section 2, we give the
stability analysis of infection-free equilibrium of system (5).
In Section 3, system (5) is used to simulate the clinical data
given by K Borroto-Esoda[19]. In section 4, the simulation of
the endemic equilibrium will be given. The paper ends with a
brief conclusion in Section 5.

II. Analysis ofModel

We adopt the following notation to model (5): R4 is a
four-dimensional real Euclidean space with norm |.|. For
τ > 0, we denote by C = C([−τ, 0],R4) the Banach space of
continuous functions mapping the interval [−τ, 0] into R4 with
the topology of uniform convergence, i.e., for φ ∈ C, the norm
of φ is defined as ‖φ‖ = sup

−τ≤θ≤0
|φ(θ)|. The nonnegative cone of

C is defined by C+ = C([−τ, 0],R4
+). The initial conditions for

system (5) is given as

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), v(θ) = ϕ3(θ), e(θ) = ϕ4(θ),

which −τ ≤ θ ≤ 0. For biological meaning, the initial function
ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) belongs to C+. From [20] and [21], It

is easily seen that the solution (x(t), y(t), v(t), e(t)) with above
initial condition exists for all t ≥ 0 and is unique. Furthermore,
it can also be shown that

x(t) > 0, y(t) ≥ 0, v(t) ≥, e(t) ≥ 0.

The system (5) has two equilibrium points

E0 = (λ/d, 0, 0, 0), E1 = (x̄, ȳ, v̄, ē)

which represent the disease-free equilibrium point and the
endemic infection equilibrium point respectively, which

x̄ =
λ − aȳ − (pc/b)ȳ2

d
, v̄ =

k̄ȳ
u
, ē =

ȳ
b
,

and ȳ is the positive of equation:

p2c2

b2
y3 + (2

pca
b
− pcβk̄

bu
− pcd

b
)y2

+ (a2 − da − βk̄a
u
− pcλ

b
)y +
βk̄λ
u
− λa = 0

Simple analysis shows that only if R0 = βk̄/aμ > 1, the
endemic infection equilibrium could exist. The objective of
this section is to study the stability of the infection-free
equilibriums E0 when τ > 0.

Theorem 2.1: (1)If R0 < 1, the disease-free equilibrium
point E0 is locally asymptotically stable for any delay τ ≥ 0.
(2)If R0 > 1, the disease-free equilibrium point E0 is unstable
for any delay τ ≥ 0. (3) If R0 = 1, it is a critical case.

Proof: Let Ē = (x̄, ȳ, v̄, ē) be an arbitrary equilibrium, the
characteristic equation about Ē is given by

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J11 − βv̄x̄
(x̄ + ȳ)2

βx̄
(x̄ + ȳ)

0

− βv̄ȳ
(x̄ + ȳ)2

J22 − βx̄
(x̄ + ȳ)

pȳ

0 −k̄ λ + μ 0
0 −ce−λτ 0 λ + b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which
J11 = λ + d +

βv̄ȳ
(x̄ + ȳ)2

,

J22 = λ +
βv̄x̄

(x̄ + ȳ)2
+ a + pē.

The characteristic equation evaluated at E0 reduces to

Δ|E0 =

∣∣∣∣∣∣∣∣∣∣∣

λ + d 0 β 0
0 λ + a −β 0
0 −k̄ λ + μ 0
0 −ce−λτ 0 λ + b

∣∣∣∣∣∣∣∣∣∣∣
= 0. (6)

Obviously, (6) has the following characteristic roots :

λ1 = −d, λ2 = −b,

λ3 =
−(a + μ) +

√
(a + μ)2 − 4(aμ − βk̄)

2

λ4 =
−(a + μ) −

√
(a + μ)2 − 4(aμ − βk̄)

2
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If R0 < 1, the four characteristic roots are all negative, so
the equilibrium point E0 is locally asymptotically stable for
any delay τ ≥ 0.

If R0 > 1, the characteristic root λ3 must be positive, the
disease-free equilibrium point E0 is unstable for any delay
τ ≥ 0.

If R0 = 1, characteristic roots λ1, λ2, λ3 are negative, λ4

is zero, which implies the trivial solution of the linearized
system of (5) is stable for any time delay τ ≥ 0, this proves
the conclusion (3).

Now we will give the globally asymptotically stability of the
disease-free equilibrium point E0 of system (5), the following
lemma will be used.

Lemma 2.1: For any solution x(t), y(t), v(t), e(t) of (5), we
have that

lim sup
t→∞

x(t) ≤ λ
d
.

It is clear that if 0 < x(0) < λ/d, v(0) > 0 and y(0) ≥ 0, e(0) ≥
0, then 0 < x(t) < λ/d for t > 0.

Theorem 2.2: (1) If R0 < 1, the infection-free equilibrium
E0 of system (5) is globally asymptotically stable for any time
delay τ ≥ 0. (2) If R0 = 1, the infection-free equilibrium E0

of system (5) is globally attractive for any time delay τ ≥ 0.
Proof: Define

G = {(ϕ1, ϕ2, ϕ3, ϕ4) ∈ C+ |
λ/d ≥ ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ3 ≥ 0, ϕ4 ≥ 0}.

Obviously, G is a positively invariant with respect to system
(5).

If R0 < 1, let us define a Lyapunov functional W on Ḡ as
follows:

W(ϕ) =
ε

2
(ϕ1(0) − λ

d
)2 +

k̄
a
ϕ2(0) + (1 − ε

k̄
)ϕ3(0)

+
ε

c
ϕ4(0) + ε

∫ 0

−τ
ϕ2(ξ)dξ,

where k̄ > ε > 0 is a positive constant to be chosen later.
It is clear that W(ϕ) is continuous on G. Calculating the time
derivative of W along the solution of system (5), we obtain

Ẇ |(5) = −ε(λ
d
− ϕ1(0))(λ − dϕ1(0) − βϕ1(0)ϕ3(0)

ϕ1(0) + ϕ2(0)
)

+
k̄
a

(
βϕ1(0)ϕ3(0)
ϕ1(0) + ϕ2(0)

− aϕ2(0) − pϕ2(0)ϕ4(0))

+k̄ϕ2(0) − uϕ3(0) − εϕ2(0) +
εu

k̄
ϕ3(0)

+εϕ2(−τ) − εb
c
ϕ4(0) + εϕ2(0) − εϕ2(−τ)

= −εd(
λ

d
− ϕ1(0))2 + ε(

λ

d
− ϕ1(0))

βϕ1(0)ϕ3(0)
ϕ1(0) + ϕ2(0)

+
k̄βϕ1(0)ϕ3(0)

a(ϕ1(0) + ϕ2(0))
− k̄pϕ2(0)ϕ4(0)

a

−εb
c
ϕ4(0) − μϕ3(0) +

εμ

k̄
ϕ3(0)

≤ −dε(
λ

d
− ϕ1(0))2 + ε(

λ

d
− ϕ1(0))βϕ3(0)

+
k̄βϕ3(0)

a
− μϕ3(0) +

εμ

k̄
ϕ3(0)

− k̄pϕ2(0)ϕ4(0)
a

− εb
c
ϕ4(0)

= −dε(
λ

d
− ϕ1(0))2 + (ε(

λ

d
− ϕ1(0))β

+μ(
k̄β
aμ
− 1) +

εu

k̄
)ϕ3(0) − k̄pϕ2(0)ϕ4(0)

a

−εb
c
ϕ4(0)

Since x(t), y(t), v(t), e(t) are positive, and from x(t) ≤ λ
d

, we

know if R0 =
k̄β
aμ
< 1, then there must be a positive constant

ε > 0 such that

ε(
λ

d
− ϕ1(0))β + μ(

k̄β
aμ
− 1) +

εu

k̄
< 0,

thus V̇ ≤ 0 for any ϕ ∈ G. This shows that w(ϕ) is a Liapunnov
functional on the subset G in C+. Define E = {ϕ ∈ G | Ẇ |(5)=

0}, we have

E ⊂ {ϕ ∈ G | ϕ1(0) =
λ

d
, ϕ3(0) = 0, ϕ4(0) = 0}.

Let M be the largest set in E which is invariant with respect
to (5). Clearly, M is not empty since (λ/d, 0, 0, 0) ∈ M.
For any ϕ ∈ M, let (x(t), y(t), v(t), e(t)) be the solution of
(5) with the initial function ϕ. From the invariance of M,
we have that(x(t), y(t), v(t), e(t)) ∈ M ⊂ E for any t ∈ R.
Thus v(t) ≡ 0, e(t) ≡ 0 for any t ∈ R. From the second
equation of (5), we further have that y(t) → 0 as t → +∞.
We can also show that x(t) → 0 as t → +∞. Hence, the
invariance of M implies that y(t) ≡ 0, x(t) = λ/d for any
t ∈ R. Therefore, M = (λ/d, 0, 0, 0). The classical Liapunov-
LaSalle invariance principal [21] shows that E0 = (λ/d, 0, 0, 0)
is globally attractive. Since E0 is locally asymptotically stable,
hence E0 is globally asymptotically stable for any time delay
τ ≥ 0.

If R0 = 1, we define the following functional on G:

W(ϕ) =
k
a
ϕ2(0) + ϕ3(0)

It is clear that W(ϕ) is continuous on Ḡ.

Ẇ |(5) =
k̄
a
βϕ1(0)ϕ3(0)
ϕ1(0) + ϕ2(0)

− k̄ϕ2(0) − k̄p
a
ϕ2(0)ϕ3(0)

+k̄ϕ2(0) − μϕ3(0)

≤ (
k̄β
a
− μ)ϕ3(0) − k̄p

a
ϕ2(0)ϕ3(0)

= − k̄p
a
ϕ2(0)ϕ3(0)

Define E = {ϕ ∈ G | Ẇ |(5)= 0}, we have

E ⊂ {ϕ ∈ G | ϕ2(0) = 0 or ϕ3(0) = 0}.
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Let M be the largest set in E which is invariant with respect
to (5). Clearly, M is not empty since (λ/d, 0, 0, 0) ∈ M. For
any ϕ ∈ M, let (x(t), y(t), v(t), e(t)) be the solution of (5) with
the initial function ϕ. From the invariance of M, we have
that(x(t), y(t)v(t), e(t)) ∈ M ⊂ E for any t ∈ R. If ϕ2(0) = 0,
thus y(t) ≡ 0 for any t ∈ R. From the third equation of (5), we
further have that v(t)→ 0 as t → +∞. Hence, the invariance of
M implies that v(t) ≡ 0 for any t ∈ R. Similarly we can show
e(t) ≡ 0 for any t ∈ R. From the first equation of (5), we can
know x(t) = λ/d for any t ∈ R. Therefore, M = (λ/d, 0, 0, 0).
If ϕ3(0) = 0, thus v(t) ≡ 0 for any t ∈ R. From the second
equation of (5), we further have that y(t) → 0 as t → +∞.
Hence, the invariance of M implies that y(t) ≡ 0 for any t ∈ R.
Similarly we can show e(t) ≡ 0 for any t ∈ R. From the
first equation of (5), we can know x(t) = λ/d for any t ∈
R. Therefore, we can also have M = (λ/d, 0, 0, 0). Liapunov-
LaSalle invariance principal [21] shows that E0 = (λ/d, 0, 0, 0)
is globally attractive for any time delay τ ≥ 0.

III. Application of Adefovir anti-viral therapy model to
clinical data

In this section, we will use the model (5) to simulate the
clinical data given by K Borroto-Esoda[19]. K Borroto et
al. investigated incidence of adeforvir (AD) resistance over 5
years of therapy in HBeAg-negative patients. The HBV DNA
load of a sample patient were given. The patient received
96 months’ treatment of AD and a 6 months’ off treatment
followed by continuous treatment. The following are detailed
steps involved in the estimation of model parameters.

1) A human liver contains about 2 × 1011 hepatocytes[4].
A patient has about total 3000ml plasma. Usually, tested
virus qualities are in copies/ml. Consequently, we can
assume that

λ/d ≈ 2 × 1011/3000.

2) In order to make the solution of the model (5) fit well
with respect to the above clinic data, we need to assume
that the half-life of a hepatocytes is about 100 days which
is shorter than half a year suggested in Ref. [22]. In other
words, this is an unknown. And we also assume the half-
life of a infected hepatocytes is the same as a uninfected
hepatocytes , hence

d = a = − ln(0.5)/100 = 6.9 × 10−3.

3) We assume that u = 0.68, that is equivalent to assume
that the half life of a virus is about one day [4].

Based on the clinic data and numerical simulation, during
the first 24 months’ treatment, we can select the other param-
eters as follows:

[β, p, k, k2, c, b, τ} = {0.0708, 1.5 × 10−9, 2.9,

2.834, 0.25, 0.2251, 10.6].

We choose the initial condition as follows:

[x(0), y(0), v(0), e(0)] = [5.5556 × 107,

1.1111 × 107, 1.2589 × 107, 5].

During the off treatment, since k2 stands for the therapy effect,
we choose k2 = 0, p = 1.5×10−6, τ = 2.3 with other parameters
unchanged. During the continuous treatment, we still us the
same parameters as the first phase. The simulation result is
shown in fig.1
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Fig. 1. The dynamic simulation (solid lines)of the treatment model (5), the
clinical data are marked by dots.

The simulation data of our model are qualitatively agree-
ment with the clinical ones, especially the HBV DNA rebound
shaking data during the off-treatment.

The results show that our time-delay immune model may
possibly capture the dynamics of HBV infection and anti-HBV
infection treatment.

During above simulation, R0 = (k−k2)β/(a∗u) = 0.99591 <
1. We still use the same parameters as above to simulate
ten years’ therapy, the simulation result is shown in fig.2.
The simulation results implies that even without mutation, the
patient may need life-long times’ therapy.
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Fig. 2. The dynamic simulation of the treatment model (5) to ten years.

IV. Simulation of the endemic equilibrium E1

In this section, we will choose some parameters to simulate
the dynamical behavior of the endemic equilibrium E1, and
the chosen parameters must satisfy R0 = (k − k2)β/(a ∗ u) > 1.
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First, we chose the same parameters used in fig.2 except
for β and k2, we chose β = 0.0354 and k2 = 1.885, thus
R0 = 7.65793 > 1. The simulation result is shown in fig.3 .

0 50 100 150 200 250 300 350 400
10

5

10
6

10
7

10
8

Fig. 3. The simulation of dynamical behaviors of the endemic equilibrium
E1, R0 = 7.65793 > 1.

In clinical test, we often find some patients’ HBV DNA
couldn’t reduce consistently and often rebound and keep
shaking in some range under therapy. The simulation in fig.3
shows that if the therapy effect parameter k2 couldn’t make the
R0 < 1, the patient couldn’t be cured, and the level of HBV
DNA would keep near the endemic equilibrium E1.

On the other hand, in order to find the complex behavior of
model (5), we chose the parameters as follows:

[λ/d, β, a, p, k̄, μ, c, b] = [200, 0.1, 1.2, 0.3, 0.05,

0.45, 0.4, 0.2, 0.3]

which R0 = k̄β/aμ = 4.5 > 1. We choose the initial
condition[x(0), y(0), v(0), e(0)] = [1000, 10, 10, 10]. The sim-
ulation of uninfected cells, HBV DNA load and CTL load are
showed in figure 4,5,6 under different delay τ. The (x, v, e)
phase-space plot is also showed in each figure.
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Fig. 4. The simulation of uninfected cells, HBV DNA load and CTL load
of model (5) with τ = 5.2.
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Fig. 5. The simulation of uninfected cells, HBV DNA load and CTL load
of model (5) with τ = 6.2.

0 200 400 600 800 1000
10

2

10
3

10
4

 u
ni

nf
ec

te
d 

ce
ll 

 

 Time/days
0 200 400 600 800 1000

10
0

10
1

10
2

10
3

H
B

V
 D

N
A

 

Time/days

0 200 400 600 800 1000
10

0

10
1

10
2

C
T

L 

 Time/days
1000

1500

2000

0

100

200
0

50

100

xy 

e 

Fig. 6. The simulation of uninfected cells, HBV DNA load and CTL load
of model (5) with τ = 7.2.

From the simulation we can see there appears a stability
switch τ∗ with the increasing of delay τ. when τ < τ∗, the
endemic equilibrium E1 is stable, when τ > τ∗, the E1 is
unstable.

V. Conclusions

In this paper, based on standard mass action incidence, we
have discussed a HBV infection therapy model with delayed
immune response. A detailed analysis of the local and global
asymptotic stability about the viral free equilibrium E0 are
carried out , When R0 < 1, (hence the endemic equilibrium
E1 is not feasible), E0 is locally asymptotically stable for any
τ ≥ 0, When R0 = 1(the endemic equilibrium E1 is also not
feasible), the linearized system of model (5) at E0 is stable
for any τ ≥ 0. By LyapunovCLaSalle type theorem, we have
also proved that the the viral free equilibrium E0 is global
asymptotically stable for any time delay τ ≥ 0 if R0 < 1.
Simulation shows that the virus could be cleared if therapy
effect parameter k2 could make the R0 = k̄β/(au) < 1, but if
the treatment was stopped, that is k2 = 0, which make R0 > 1,
the level of HBV DNA would rebound quickly and may keep
shaking.
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On the other hand, if R0 > 1, our model (5) would have
endemic equilibrium E1. For given parameters, simulation
shows that there may exist a stable switch τ∗, when τ < τ∗, the
endemic equilibrium E1 is stable, but if τ > τ∗, the endemic
equilibrium E1 would be unstable.
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