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Abstract—With the development of high-throughput technolo-
gies, e.g. microarrays and the second generation sequencing
technologies, gene expression profiles have been applied widely to
characterize the functional states of various samples at different
conditions. This is especially important for clinical biomarker
identification that is vital to the understanding of the pathogenesis
of a certain disease and the subsequent therapies. Because
of the complexity of multi-gene disorders, a single biomarker
or a set of separate biomarkers often fails to discriminate
the samples correctly. Moreover, biomarker identification and
class assignment of diseases are intrinsically linked while the
current solutions to these two tasks are generally separated.
Motivated by these issues, we give out a novel model based on
linear programming in this study to simultaneously identify the
most meaningful biomarkers and classify accurately the disease
types for patients. Results on a few real data sets suggest the
effectiveness and advantages of our method.

I. INTRODUCTION

Identification of biomarkers that can indicate a specific
biological state of samples is an important topic in biomedical
research because it can provide insightful clues into the
pathogenesis of a certain disease and important indices for
accurate diagnosis. With the development of high-throughput
technologies, e.g. microarrays and the second generation se-
quencing technologies, thousands of genes can be measured
simultaneously. How to select the most meaningful biomarkers
from the large number of genes forms a common question that
clinicians often come across.

The most straightforward method for identifying biomarkers
is calculating the fold-changes of gene expressions in different
classes of samples, given that the gene expression data is
used to characterize the biological states. The larger the fold-
change is, the more likely the gene is a biomarker. However,
this method does not consider the variations among samples
of the same classes. So the methods based on or similar to

the student t-test or Wilcoxon rank-sum test are introduced to
eliminate the irrelevant or noisy features [1], [14]. Due to the
multiple testing issues, methods such as SAM that provide
fine false discovery rate (FDR) control are invented [16].
Generally, all these methods can generate many biomarkers
that are redundant. Peng et. al. propose a criterion based on
mutual information to find a set of biomarkers that have the
maximal relevancy to the class labels but minimal redundancy
within themselves [11].

In nature, biomarker identification is intrinsically linked to
class assignment to samples [3], [10], [13]. From a machine
learning view, biomarker identification is a feature selection
problem given the biological states (e.g. disease or normal)
of samples. The aim of feature selection is to find a set of
features that can maximize the prediction of accuracy of a
classifier [8]. With different classifiers, the identified biomark-
ers may be different. Many supervised or semi-supervised
machine learning method, such as support vector machine and
Bayesian networks, can be exploited as the classifiers to guide
the identification of biomarkers [1], [4], [5], [7], [12], [19].
However, biomarker identification is not explicitly embedded
in these methods. A model for simultaneous biomarker iden-
tification, especially non-redundant biomarker identification,
and classification is needed to explicitly model the properties
of biological states.

In this study, we explicitly consider the properties of normal
and disease biological states and propose a novel model
based on linear programming. The model can simultaneously
identify biomarkers from thousands of candidates and classify
samples based on the identified biomarkers. Different from
the general biomarker identification approaches, it produces
a set of non-redundant but complementary biomarkers that
maintain the maximal classifying power. It is flexible. It
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can deal with two classes, multiple classes with order and
multiple classes without order. We tested it and compared it
to the classic biomarker identification method and classifying
method on real gene expression data sets. The results highlight
its effectiveness.

II. METHODS

A. The heuristics we used to build our model

We argue that a stable biological state is characterized
by the expressions of a set of genes rather than all genes.
The expressions of this set of genes form the basis that
the biological state is different from others. Assuming the
expressions of all genes form a high-dimensional space, one
biological state may correspond to a local compact region in
the space (1). We use an ellipsoid to model the compact region
and try to make sure that samples with that biological state
localize in the inner part of the ellipsoid whereas other samples
without that biological state localize in the outer part of the
ellipsoid. We seek those ellipsoids that have low dimensions
and discriminate those samples with different biological states.

B. The formulations

Based on the arguments above, we proposed the following
model to model the biological states explicitly based on their
gene expressions. Let us consider the two-class cases first.

Given two biological states (denoted by a and b), we assume
that there are totally m genes to describe their status. There are
na and nb samples with states a and b, respectively. We try to
find a minimal gene set that can discriminate the samples with
different biological states maximally. It can be formulated as
follows:

min
n∑
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2 + zb
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a belong to a compact ellipsoid of radius
√

za
1 . Constraint

(3) describes that the samples of class b localize outside the
ellipsoid of class a with a distance at least

√
za
2 . So do the

constraints (4) and (5). Constraints (6) and (7) define the inner
and outer parts of the ellipsoids. Constraint (8) confines wi, i ∈
{1, · · · , m} in the range of zero and one. The objective (1) tries
to find a minimal set of genes that can maximize the distances
between the two ellipsoids and minimize their volume.

If the samples of two classes are non-separable, a formulism
like the soft margin support vector machine (SVM) is proposed
to tolerate the training errors as follows:
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Where ξ1
j , j ∈ {1, · · · , n} represents the bias of sample j from

the inner part of the ellipsoid of its class and ξ2
j , j ∈ {1, · · · , n}

denotes the bias of sample j from the outer part of the ellipsoid
of the class it does not belong to. C is a parameter to tune
how the training errors are punished.

Here we model each of the biological state as an ellipsoid
in one linear programming framework. In fact, like twin-
SVM [9], if only one biological state is modeled, the model
above can still work for biomarker identification and class
assignment. That is, model that is composed of (1), (2), (3),
(6) and (8) still works. This is especially useful when one
biological state is very heterogeneous.
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C. Adaptations to multiple classes

Because each biological state is modeled by an ellipsoid, it
is very easy to extend the model to those cases where multiple
classes are available. If the multiple classes are independent,
the extension can be implemented by adding one ellipsoid for
each state. If the multiple classes are ordered, ellipsoids can
be added for each binary partition of the multiple classes. For
example, given three classes in order, Class One, Class Two
and Class Three, we can set one ellipsoid for Class One, one
ellipsoid for Class One and Class Two and one ellipsoid for
Class Three such that all classes can be discriminated from
each other. Below we give out the formulations for these two
cases.

Given n samples of c classes without order that are
described by m features, the biomarker identification and
classification framework based on ellipsoids are described as
follows:

min
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tolerate the training errors.
Given n samples of c classes with order that are described

by m features and assuming that the c classes have been or-
dered from 1 to c, the ellipsoid-based framework for biomarker
identification and sample classification is given as follows:
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⋃a

i=1 Ii, a ∈ {1, · · · , c − 1}.

D. Data and Evaluation methods

Here we use two real data sets to demonstrate the effec-
tiveness and features of our models in both biomarker identi-
fication and sample classification. One data set is the classical
Fisher’s Irish data which is used frequently in classification
and clustering [15]. There are three classes in this data set.
Class One can be separated linearly from Class Two and
Class Three whereas Class Two and Class Three can not be
classified by a hyperplane in the input space. We use it to
show that our model has the same accuracy as the state-of-
the-art machine learning algorithms such as support vector
machines [2], [17], [18]. The second data set is about seventy-
two acute leukemia patients in which there are two types of
samples [6]. One type is acute myeloid leukemia (AML) and
the other is acute lymphoblastic leukemia (ALL). ALLs can be
further classified into T cell ALLs and B cell ALLs. The gene
expressions of these samples were profiled by microarrays. So
thousands of genes are measured and identifying biomarkers is
necessary to reduce the complexity of the future measurement
and to deepen the understanding of the pathogenesis of these
diseases. We use this data set to show how a non-redundant
set of biomarkers is identified whereas the power for sample
classification is maintained. We use five-fold cross-validation
to evaluate our model and compare it to the state-of-the-art
classifiers and biomarker-identification method.

III. RESULTS

A. On Iris data

We compared our method with support vector machines
coupled with the Gaussian kernel which has been shown dom-
inant performances in either linearly separable or nonlinearly
separable applications. By setting the gamma parameter of the
support vector machines with the Gaussian kernel as one, the
classifier can classify the samples with 99% mean accuracy
(100 five-fold cross validations) in which Class One is the
positive class and Class Two and Class Three are the negative
class. The mean accuracy of our method in 100 five-fold cross
validations also reaches 99%. This high accuracy is because
Class One can be separated linearly from Class Two and
Class Three. The mean accuracy of support vector machines
to classify Class Two from Class Three is about 94% (100
five-fold cross validations) where gamma is set to one. The
accuracy of our method also reaches 94%, suggesting the
competitive performance of our method to the state-of-the-
art classifiers in sample classification. Because there are only
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four features in Irish data, the performance in feature selection
(biomarker identification) is not evaluated.

B. On AML and ALL data

Because of the inherent noise in the microarray data, we first
preprocessed the raw gene expression data of 6817 genes by
filtering those non-informative genes with max − min ≤ 500
or max / min ≤ 5 where max and min mean the maximum
and minimum gene expression values in all the samples,
respectively. Finally 1751 informative genes were retained to
do the subsequent analysis.

We first tested the performance of support vector machines
with the Gaussian kernels to distinguish AMLs from ALLs.
We used the svmtrain and svmclassify functions in Matlab and
found that the mean accuracy of support vector machines with
the Gaussian kernels (gamma=50, selected by grid search) was
about 91%. The accuracy of linear support vector machines is
about 98.06%. Then we tested the accuracy of our method
to discriminate AMLs from ALLs and the result suggested
that the mean accuracy of our method can reach 99.14%. This
suggests again that our method have competitive performance
to the state-of-the-art classifiers.

Further, we compared the performances of sample classi-
fication of both methods on the data subset of T cell ALLs
and B cell ALLs. The accuracy of support vector machines
with Gaussian kernels (gamma=50, selected by grid search) is
about 81.68%. The accuracy of linear support vector machines
is 96.68% whereas our methods can reach the mean accuracy
of 97.11%, suggesting again that our method is competitive to
the state-of-the-art methods when classification is the task.

Given the competitive classification power of our method,
we will show its performance for identifying non-redundant
biomarkers. To discriminate AMLs from ALLs, our method
identified nineteen probes as a candidate biomarker set. Upon
this set of biomarkers, we applied the hierarchical clustering
method to group the samples (clustergram in Matlab R2010b).
The result suggests that the AMLs can all be distinguished
from ALLs accurately (2). The mean accuracy of 100 five-
fold cross-validations upon these biomarkers reaches 99.93%.

If t-test is used to identify biomarkers distinguishing AMLs
from ALLs, eighty-three probes were selected (alpha: 0.05,
Bonferroni correction). Upon this set of biomarkers, hierarchi-
cal clustering (clustergram in Matlab R2010b) grouped ALLs
from all except one AML (3). The mean accuracy of 100 five-
fold cross-validations upon these biomarkers is 98.47%, lower
than the biomarker set identified by our method significantly
(p-value < 3.35e-71, student t-test).

The same comparison was conducted to identify biomarkers
that discriminate T cell ALLs from B cell ALLs. When t-
test is used, twenty-three probes were selected (alpha:0.05,
Bonferroni correction for the multiple testing problem). Upon
this set of biomarkers, hierarchical clustering clustered all
except one T cell ALLs correctly from the B cell ALLs (5).
The mean accuracy of 100 five-fold cross-validations upon
these biomarkers approaches 96.04%. Our method identified
twenty-one probes as a biomarker set. Hierarchical clustering

Fig. 1. The idea behind our method is to minimize the volumes of each
ellipsoid and to maximize the distances among ellipsoids.

AML 
ALL 

Fig. 2. Hierarchical clustering of AMLs and ALLs based on biomarkers
identified by our method.

based on this probe set discriminate all T cell ALLs correctly
from B cell ALLs (4). The mean accuracy of 100 five-fold
cross-validations upon these biomarkers reaches 96.30%.

We compared the biomarker sets identified by t-test and
our method. For AMLs and ALLs, there are nine probes over-
lapped between the two biomarker sets. The mean correlation
coefficient of our biomarker set is significantly less than that of
biomarkers identified by t-test (6). For T cell ALLs and B cell
ALLs, there are six probes shared in the two biomarker sets.
The expression profiles of probes identified by our method are
less correlated significantly to each other compared to those
probes identified by t-test (7).

We further applied our method to identify biomarkers that
can discriminate ALL, T cell ALL and B cell ALL simultane-
ously. A total of twenty-four probes were selected and hierar-
chical clustering (clustergram in Matlab R2010b) upon this set
of biomarkers suggests their discriminative effectiveness (8).

IV. DISCUSSIONS AND CONCLUSION

Biomarker identification and sample classification is impor-
tant in current biomedical researches and clinical practice.
Although there are many methods available for biomarker
identification and sample classification, few can simultane-
ously identify biomarkers and classify samples. Further, non-
redundant biomarkers have not been paid much attention,
limiting the inclusion of those biomarkers that have weak
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AML 
ALL 

Fig. 3. Hierarchical clustering of AMLs and ALLs based on biomarkers
identified by t-test.

B cell ALL 
T cell ALL 

Fig. 4. Hierarchical clustering of B cell ALLs and T cell ALLs based on
biomarkers identified by our method.

B cell ALL 
T cell ALL 

Fig. 5. Hierarchical clustering of B cell ALLs and T cell ALLs based on
biomarkers identified by t-test.

Fig. 6. Biomarkers for AMLs and ALLs identified by our method are less
correlated than those identified by t-test.

correlations with a specific biological state. In this study,
we use ellipsoids to model biological states and try to iden-
tify non-redundant complementary biomarkers and to classify
samples simultaneously. The idea is formulated as a linear
programming problem that can be solved easily and be applied

Fig. 7. Biomarkers for B cell ALLs and T cell ALLs identified by our
method are less correlated than those identified by t-test.

B cell ALL T cell ALL AML 

Fig. 8. Hierarchical clustering of AMLs, B cell ALLs and T cell ALLs
based on biomarkers identified by our method.

to very large scale data sets. The Iris data set suggests that
our method has competitive performance with the state-of-
the-art classifiers (support vector machines with Gaussian
kernels) no matter the samples are separated linearly or not.
The leukemia gene expression data set suggests not only the
dominant performance of our method in classification but also
the power in identifying biomarkers. The biomarkers identified
by our method are less redundant and more predictive than
those identified by the classical methods.
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