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Abstract—MicroRNAs can regulate hundreds of target genes 
and play a pivotal role in a broad range of biological process. 
However, relatively little is known about how these highly 
connected miRNAs-target networks are remodelled in the 
context of various diseases. Here we examine the dynamic 
alteration of context-specific miRNA regulation to determine 
whether modified microRNAs regulation on specific biological 
processes is a useful information source for predicting cancer 
prognosis. A new concept, Context-specific miRNA activity 
(CoMi activity) is introduced to describe the statistical 
difference between the expression level of a miRNA’s target 
genes and non-targets genes within a given gene set (context). 

The microarray gene expression profile of brain tumors from 
356 patients (The Cancer Genome Atlas dataset) was converted 
into a CoMi activity pattern, and showed significant positive 
correlation with the corresponding miRNA expression pattern. 
In a breast cancer cohort, the differential CoMi activity between 
good prognosis (longer survival) vs. bad prognosis patients 
forms a scale-free network, which highlighted a group of 
important cancer-related microRNAs and GO terms, e.g. 
hsa-miR-34a and ‘cell adhesion’. Then two breast cancer 
cohorts were used in outcome prediction in an independent test. 
Using a popular T-test feature selection method and a support 
vector machine (SVM) classifier with 10-fold cross-validation, 
the CoMi activity feature achieves an area under curve (AUC) 
of 0.7155, better than the AUC value of 0.6339 for feature 
selection based on mRNA expression. In an independent test, 
CoMi feature selection achieved an AUC of 0.6874. Survival 
analysis also shows signatures defined by CoMi activity was 
predictive of survival and superior to mRNAs signatures.  

In short, we have demonstrated the first interrogation of 
dynamic remodeling of context specific miRNAs regulation 
networks in cancer. The altered microRNAs regulation on 
specific contexts could be used to predict cancer prognosis and 
reveal hidden levels of cancer regulation mechanisms. 

Keywords—context-specific microRNA activity; network 
biology; microRNA; microRNA Regulation Network; prognosis 
prediction; survival analysis 

I. Introduction 
MicroRNAs (miRNAs) are a class of ~22 nt endogenous 

small regulatory RNA molecules that regulate target mRNAs 
either via translation repression or mRNA degradation [1, 2]. 
The regulatory activities of miRNAs are involved in various 
biological processes such as development, proliferation, 
apoptosis, stress response, and cancer development, 
progression and metastasis [3-9]. In addition to this, many 
miRNAs such as let-7, miR-125, miR-17-92, miR-124, 
miR-155 and miR-223 have been reported to be related to 
cancer development or outcome [10]. Previous works show 
that infer miRNA activity by combining gene expression 
with miRNA target prediction is feasible [11-13]. Our group 
constructed a prognosis-related synergistic gene-gene 
interaction network as an efficient tool for pre-clinical drug 
prioritization. We found that the interaction of microRNA 
target gene sets with other gene modules is important to the 
robustness of cancer gene network [14], suggests that cancer 
prognosis might be modulated by miRNAs regulation 
network. However, few studies have examined the 
correlation between miRNAs with cancer outcome in the 
global context of microRNAs and their target gene network.  

Recently, studies [15-18] have revealed that mRNA 
expression profiles could be used to effectively predict 
cancer prognosis. Dealing with breast cancer, [17] and [18] 
separately identified a 70 gene signature and 76 gene 
signature derived from mRNA expression profiles to classify 
cancer samples into a good-outcome group and a 
bad-outcome group with an accuracy between 60%-70% [19]. 
However, there are two main problems with these signatures. 
Firstly, when these signatures were applied to other data to 
perform an independent test, the performance declined 
significantly and secondly, there is little overlap between 
these signatures. Subsequently, alternative feature spaces 
such as protein-protein interaction networks, pathways and 
GO terms have been used to predict cancer outcome 
[19-23].In this study we proposed that context-specific 
miRNA activity networks might be a useful indicator of 
cancer prognosis. To test this hypothesis, a context-specific 
miRNA activity (CoMi activity) was introduced to describe 
the statistical difference between the expression level of 
miRNA target genes and non-target genes within specific 
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contexts. Here gene sets defined by Gene Ontology Terms 
(Gene Ontology Biological Process - GOBP, Gene Ontology 
Cell Context - GOCC) were used to define context. For a 
gene expression pattern of a breast cancer patient, we could 
generate a series of CoMi activities by combining 
information from microRNAs- target gene pairs. We then 
examined whether this new feature space (i.e. CoMi activity) 
could provide discriminating power for different prognostic 
groups of cancer patients. 

II. Results and Discussions 

A. The pipeline used to identify Context specific miRNA 
activity 

To check microRNAs’ regulation on a specific context, 
we proposed the following method to calculate CoMi activity 
(Fig. 1).  

To calculate a miRNA’s CoMi activity on a context (here 
we use GOBP as an example, unless stated otherwise, all 
subsequent context is based on GOBP), miRNA targets are 
predicted using a range of target prediction software (e.g. 
TargetScan). We then extract the intersection of the miRNA 
target set and the GO term gene set. Secondly, a two step 
filter method was applied to the miRNAs-GO term 
combination. Firstly, if the number of elements (probeSet of 
HG-U133A,see method) in the intersection set is smaller than 
20, we discard the GOBP term because the intersection set is 
too small for T-test calculation. Secondly, the significance of 
the intersection set is estimated using an appropriate 
statistical method, here the hypergeometric distribution (see 
method) was chosen. Only the miRNA-GO term pairs that 
had a P-value smaller than 0.05 (We performed multiple 
testing adjustments and checked the P- value distributions, 
when P-value is smaller than 0.05, the FDR is not more than 
0.005, data not shown) were passed to the next stage. Thirdly, 
for each biological sample profiled by microarray gene 
expression (Fig. 1b), we then constructed the expression 
vector for two sets: one for miRNAs target genes, another for 
non-target genes. Then the statistical difference between 
these two sets was calculated (Fig. 1c). Here the 2-sample 
T-test was employed and the T-score was used to represent 
the CoMi activity of a given miRNA on a specific GO term 
in each biological sample. According to traditional view of a 
miRNA’s action on target gene abundance (down-regulation), 
if the expressions of target genes are significantly lower than 
those of non-target genes, then the CoMi activity is positive. 
If there is no significant difference between the expression 
distributions of the target genes vs. non-target genes, the 
CoMi activity is close to zero. In theory, the distribution of 
target genes expression levels might, on average, also be 
higher than those of non-target genes, we consider this might 
be due to the action of other factors. 

Using the method outlined above, patients’ CoMi activity 
patterns can be generated from their corresponding mRNA 
expression pattern. Although a miRNA expression profile 
could be interrogated by a simple miRNAs microarray or 
qRT-PCR, a clear advantage of the CoMi activity metric is 
that it reveals a comprehensive regulatory relationship 
between the miRNA and a specific context, which is often 
hidden in the gene expression profiles. As describe below, a 

CoMi activity network derived from a CoMi activity pattern 
might also be used to interrogate the synergistic or 
antagonistic action of multiple microRNAs on an individual 
biological process (GO term). 

B. Rationality, robustness and repeatability of the CoMi 
activity metric 

In order to validate the relevance of CoMi activity, we 
calculated the similarity between the CoMi activity pattern 
and the corresponding miRNA expression pattern (See 
methods). The brain cancer dataset which download from 
The Cancer Genome Atlas dataset (TCGA: 
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) 
contains simultaneous measurement of mRNA expression 
and miRNA expression of 356 patients. We used this data to 
generate the CoMi activity patterns based on the mRNA 
expression profiles. When combined with various GO term, 
one miRNA have multiple CoMi activity values. We 
summarized them into one single value (see method). The 
Spearman correlation coefficient was calculated between the 
CoMi activity pattern and the miRNA expression pattern. 
From Fig. 2, it can be seen that all the CoMi activity patterns 
derived from GOBP (Gene Ontology biological process) 
have a significant (positive) correlation with their miRNA 
expression profiles (miRNA-GOCC shows similar results, 
data not shown). The correlation values are ranged from 0.25 
to 0.45, and all of the P-values are smaller than 10e-4. 

To further investigate the robustness of our CoMi 
estimation method, we recalculated the correlation using 
different microRNAs target prediction methods. All CoMi 
activity estimations based on these target predictions 
(TargetScan [2, 24, 25], miRanda [26, 27], ExprTarget [28], 
RNA22 [29], TargetScan ∪  RNA22), showed positive  
correlation with miRNA expression profiles (Fig. 2-Fig. 6). 
Furthermore, they were all significantly correlated with each 
other (data not shown). Thus our method is robust regardless 
of the miRNAs – target gene data source. Interestingly, the 
union set of TargetScan and RNA22 performed the best 
(Highest spearman correlation and lowest P-value, data not 
shown). Most  miRNA target prediction algorithms 
(TargetScan, miRanda, PicTar) are based on the assumption 
that miRNAs bind to highly conserved seed matches in the 
3’UTRs of targeted genes, but recent studies demonstrated 
that non-conserved sites can be as important as conserved 
sites [1, 2, 30]. Our results might suggests that a combination 
of these two strategies –conserved site analysis (TargetScan) 
and non-conserved site analysis (RNA22) might be 
complementary to each other and the union of these two 
miRNAs target gene sets represent a more comprehensive set 
of target predictions. In the following calculations, the union 
target gene set of TargetScan and RNA22 was the default 
choice.  

To further validate the reproducibility of the calculated 
CoMi signature for cancer prognosis prediction, we checked 
the overlap of informative CoMis (miRNAs-GO term pairs) 
selected from two independent breast cancer data cohorts: 
Wang’s data (GSE2034) [18] and GSE7390 [31]. The T-test 
was used to select the CoMi activity (miRNAs-GOBP) that 
was significantly differentially expressed in the good 
outcome group and bad outcome group respectively. We 
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calculated the overlaps of the features selected from two 
different breast cancer cohorts in different P-value grads, all 
of which are significant (table 3). Thus our method identified 
a consistent miRNAs regulation network involved in cancer 
prognosis related processes (e.g., recurrence/metastasis) from 
two independent breast cancer cohorts (data not shown). 

C. Context specific miRNA activity network (CoMiNet) 
could reveal hidden layer of mechanism related to 
cancer prognosis 

We used the 200 best features (For details, see table 4) 
selected by T-test in the bad-outcome group and 
good-outcome group in the Wang dataset (GSE2034) to 
construct CoMiNet (see method). In the network (Fig. 7a), 
the blue node represent miRNA, the yellow nodes represent 
GO terms (GOBP), red edges represent positive CoMi 
activity (positive t-score, higher miRNAs regulation activity 
in bad/good outcome groups), green edges represent negative 
CoMi activity (negative t-score, lower miRNAs regulation 
activity in bad/good outcome group), and the size of the 
nodes is proportional to their degrees. 

  We first investigated the topology of the CoMi 
network. Both the in-degree (GO term) and the out-degree 
(miRNA) fits a power law distribution, suggesting that the 
CoMi network is a typical scale free network (Fig. 7).  

In the network, hsa-miR-34a (degree=5) are among the 
most connected (i.e., hub node) miRNAs. In additional to this, 
its family hsa-miR-34b (degree=2) are also in our CoMiNet. 
hsa-miR-34a is a well-known tumor suppressor, showing 
tumor suppressor activity in breast, pancreatic and colon 
cancers via the p53 network [32, 33],while hsa-miR-34b is 
significantly associated with the presence of breast cancer’s 
metastases [33].  In the sub-network (Fig. 8b) of 
hsa-miR-34a and hsa-miR-34b, hsa-miR-34a is connected to 
a group of cancer-related GO terms: ‘cell migration’, ‘cell 
death’, ‘negative regulation of apoptosis’, ‘post-embryonic 
development’, while hsa-miR-34b connects to ‘negative 
regulation of cell proliferation’ and ‘regulation of 
transcription from RNA polymerase II promoter’. In 
additional to this, hsa-miR-9 (degree=5) is also a important 
miRNA in our network, reported to be associated with 
vascular invasion and lymph node metastasis in breast cancer 
[34];  the sub-network of hsa-miR-9 (Fig. 8c) is  direct to 
GO terms that play important roles in cancer metastasis, such 
as ‘cell adhesion’, ‘cell-cell adhesion’, ’response to organic 
cyclic substance’, ‘chemotaxis’ and ‘G-protein coupled 
receptor protein signaling pathway’. Other miRNAs, such as 
hsa-miR-124, a notable tumor suppressor in all cancers [33], 
is found to connect to ‘Apoptosis’, hsa-miR-221 and 
hsa-miR-222 are directed to “Oncogenic activity miRNA in 
breast cancer” [33], and hsa-miR-373 is a activator of 
metastasis of breast cancer [34]. 

The CoMi network also highlights many known cancer 
related miRNA families or clusters such as the let-7 family 
(hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7f, 
hsa-let-7g, and hsa-let-7i), which are tumor suppressors[33], 
In Fig. 8d, has-let-7a, has-let-7d and has-let-7i all negatively 
linked to ‘immune response’, which may indicate that the 
three let-7 family miRNAs synergistically act on ‘immune 
response’. The miR-17-92 cluster (hsa-miR-18a, 

hsa-miR-19a, hsa-miR-19b) is another cluster in our 
CoMiNet , which shows oncogenic activity in various 
cancers include breast cancer [33]. Within the miR-520 
cluster (hsa-miR-515-5p, hsa-miR-519d, hsa-miR-520a-3p, 
hsa-miR-520b, hsa-miR-520c-3p, hsa-miR-520d-3p, 
hsa-miR-520e, hsa-miR-520g, hsa-miR-526b), hsa-miR-520b 
is reported to regulate migration of breast cancer cells [35] 
and hsa-miR-520c is a activator of metastasis [34]. The 
hsa-miR-15 family (hsa-miR-15a, hsa-miR-15b) and hsa-181 
family (hsa-miR-181a, hsa-miR-181b, hsa-miR-181d) are 
tumor suppressors [33]. 

The high degree GO term nodes in the network also show 
a relationship with cancer. ‘cell adhesion’ (degree=8) is a 
pivotal biological process involved in metastasis of breast 
cancer [36]. ‘negative regulation of apoptosis’ (degree=8) is 
a hub node in the network while apoptosis regulatory 
proteins have prognostic significance in breast cancer 
patients [37]. Finally, ’immune response’ (degree=7) and 
‘response to drug’ (degree=7) also play important roles in 
prognosis of cancer. 

The combinatory miRNA-miRNA regulation on common 
target gene modules might reveal the synergistic mechanism 
of miRNAs regulation [38]. In our CoMiNet constructed 
from high ranking features, three tumor suppressor[33] 
miRNAs hsa-let-7f, hsa-181a and hsa-181d are negatively 
connected to ‘anti-apoptosis’, while hsa-miR-200a* 
(miR-200 is reported to enhances mouse breast cancer cell 
colonization to form distant metastases [39]) is positively 
directed to ‘anti-apoptosis’ (Fig. 8e). These finding may 
indicate that three tumor suppressor miRNAs and one 
onco-miRNA work synergistically on the same biological 
process ‘anti-apoptosis’ to influence the metastasis of breast 
cancer patients. In the bad-outcome group compared with 
good-outcome group, the decreasing activity of three tumor 
suppressor miRNAs (green edge) and the increase in one 
onco-miRNA’s activity (red edge) increases in turn the 
metastasis risk of breast cancer patients. In another 
subnetwork, hsa-miR-125b and hsa-miR-520b are both 
negatively connected to ‘DNA repair’ (Fig. 8f). 
Hsa-miR-125b is reported to be down-regulated in breast 
cancer patients [40], and hsa-miR-520b is reported to 
regulate migration of breast cancer cells, additionally, 
polymorphisms in DNA repair genes have associations with 
cancer risk [41]. From these findings, we may argue that 
mir-520b and mir-125b co-regulate the biological process 
‘DNA repair’ to influence the prognosis of breast cancer. 

D. CoMi activity patterns demonstrate better prognosis 
prediction performance in breast cancer than mRNA 
expression patterns  

We used CoMi activity patterns to predict 
distant-metastasis over 5 years on lymph node-negative 
primary breast cancers. 262 samples from the Wang dataset 
were used for training, and 164 samples from the GSE7390 
dataset were used to perform an independent test. In both the 
training data set and the independent test data set, the CoMi 
activity pattern (GOBP) outperformed the mRNA expression 
profile, and the CoMi activity pattern achieved an AUC of 
0.7155 and 0.6874 for the two datasets respectively, while 
the corresponding mRNA expression profiles achieved an 
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AUC of 0.6339 and 0.6647 respectively (Fig. 9). At the same 
time, the best accuracy of the CoMi feature is 69% on 
GSE2034,while the mRNA classifier is 65% (Fig.10,the 
sensitivity and specificity result in Wang data set of different 
feature spaces are shown in Fig. 11 and Fig. 12). From the 
ROC curve in Fig. 13, it is obvious that the CoMi activity 
pattern classifier can achieve better performance than the 
mRNA expression profile classifier. Similar results of the 
CoMi activity pattern for GOCC terms can be observed (data 
not shown).  

Furthermore, we combined these two types of CoMi 
activity features (miRNA-GOBP, miRNA-GOCC). The 
combined features show marginally improved performance 
(AUC equals 0.7214 and 0.6954 respectively, data not 
shown).  

We also use Cox proportional hazards regression to 
regress the value of each feature to the survival time on 
GSE2034 (22215 features in the mRNA expression pattern 
and 6314 features in the CoMi activity pattern of GOBP), we 
then calculated the FDR of the two kinds of features. In the 
CoMi activity pattern, there are 16 features for which the 
FDR is smaller than 0.1, while only 5 features are found in 
mRNA expression pattern (Table 5). After this, we used the 
log-rank test to select the best feature of both the CoMi 
activity pattern and the mRNA pattern to generate a survival 
curve; the ‘best’ feature (hsa-miR-154, response to organic 
cyclic substance) of the CoMi activity pattern (GOBP) 
divided the 286 patients into two group distinctly with HR of 
2.79 ([95% CI 1.84 4.22], log rank P-value of 3.12E-07) (Fig. 
14). Hsa-miR-154 has been reported to 
be negatively correlated with ER positivity in early breast 
tumors [42].The targets of hsa-miR-154 on GO term 
‘response to organic cyclic substance’ was shown in Table 6. 

The above results show that the CoMi activity feature 
space is more informative than the mRNAs feature space in 
various metrics (classification performance, log rank test, cox 
regression). 

III. Conclusions 
To our best knowledge, this is the first attempt to 

interrogate the global miRNAs regulation network by 
discover the regulation relationship between the miRNAs and 
contexts. We have demonstrated the proposed CoMi activity 
estimation method is a robust and repeatable method to 
discover the regulation mechanism of miRNA on specific 
biological processes. The CoMi activity pattern is a useful 
new feature space that can be used to predict breast cancer 
prognosis. Distinct from miRNA expression profile, the 
CoMi activity pattern can reveal regulation mechanisms that 
exist between miRNAs and gene modules, such as a miRNA 
regulates multiple gene modules and several miRNAs 
co-regulate one gene module. By uncovering the context 
specific miRNA activity pattern, the latent regulation within 
this highly rewired gene regulation network can be used to 
understand cancer prognosis and disease processes. 

IV. Methods 

A. Materials 
mRNA expression profiles and miRNA expression 

profiles of brain cancer samples was download from TCGA 
(The Cancer Genome Atlas), mRNA microarray analysis was 
performed with Affymetrix U133A Genechips For miRNA 
expression level data, miRNA profiling from total RNA was 
performed using an Agilent 8 x 15K Human miRNA-specific 
microarray. We use level 3 (expression calls for miRNAs per 
sample, see TCGA data guidance, 
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) data 
to calculate the similarity between the miRNA activity 
pattern and miRNA expression pattern. After eliminating the 
repeated samples and samples which only contain a miRNA 
expression profile or a mRNA expression profile, 356 unique 
samples with both mRNA expression profile and miRNA 
level 3 expression profiles remained.  

Breast cancer samples were obtained from the GEO 
database (series entry GSE2034 and GSE7390), all of which 
were lymph node-negative primary breast cancers with clinic 
information (distant metastases days, distant metastases 
status etc). There are 286 samples in GSE2034 and 198 
samples in GSE7390. Microarray analyses were performed 
on both of datasets using the Affymetrix U133a GeneChip. 
Expression values for each gene were calculated using 
Affymetrix GeneChip analysis software MAS 5.0 [18, 31]. In 
GSE2034, each data was log-transformed by base two to 
make the mRNA expression pattern fit a normal distribution. 

B. miRNA target prediction tools 
The following miRNA target predicting tools were used:  

TargetScan release 5.1 [2, 24, 25], RNA22 [29], miRanda 
Version 5.0 [26, 27] and ExprTarget [28] (Table2). 

C. CoMi activity calculation 
Two categories in the Gene Ontology were used in our 

analysis of gene modules: Biological Process, and Cellular 
Component (geneontology.org). The mapping probe sets ID 
(HG-U133A) to Gene Ontology was downloaded from 
http://www.biomart.org. All genes associated with one GO 
term were defined as one gene module and the module was 
named according to the name/title of GO terms.  

To check whether the intersection set of set A (miRNAs 
target gene set) and B (a set of genes assigned to one GO 
term) is significant, the hypergeometric distribution (1) was 
calculated, and the final P-value p2 is calculated by:  p2=1-p. 

i 0

K M-K
i N-i

 ( / , , )
M
N

x

P F x M K N
=

  
  
  = =

 
 
 

∑   (1)                  

Where M is the size of the Universal set, x is the size of 
intersection set, K is the size of set A and N is the size of the 
set B. This equation was also used to check the significance 
of the intersection of the selected features between two breast 
cancer data set. 

The two samples T-test (2) was used to calculate the 
difference between the expression vector of miRNAs target 
genes and the expression vector of non-target genes.      
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where X and Y are the sample means, sx and sy are the 
sample standard deviations, and n and m are the sample sizes. 

D. Similarity calculation between miRNAs expression and 
CoMi activity 

We calculated the Spearman correlation coefficient 
between the miRNA CoMi activity pattern and the miRNA 
expression pattern. In theory, there are two kinds of 
correlations (All miRNA expression values of a sample vs. 
all CoMi activity scores of a sample; a miRNA’s expression 
value across all samples vs a miRNA’s CoMi activity score 
across all samples), here the former correlation was used in 
our calculation. The brain cancer dataset from TCGA (see 
methods, dataset above) was used in our project. 356 mRNA 
expression profiles were converting into 356 CoMi activity 
patterns. For each miRNA, if combining with N GO terms, 
there will be N CoMi activities for this miRNA. Thus the 
multiple CoMi activities was merged into one single value 
for each miRNA as follows: 

      
    

1
| |

N

ALL i
i

CoMi CoMi
=

=∑
               (3)

 

Then the 356 mRNA expression patterns were converted 
into their corresponding miRNA CoMi activity patterns. 
Finally, the Spearman correlation coefficient was calculated 
between the 356 miRNA CoMi activity patterns and their 
corresponding miRNA expression pattern. 

E. Cancer prognosis prediction 
We classified breast cancer samples into high or low risk 

groups in the GSE2034 and GSE7390 datasets. The two 
groups (good-outcome group and bad-outcome group) were 
determined according to whether the samples developed 
distant-metastasis over 5 years (for details, see Table1). In 

GSE2034, 5 times 10-fold cross-validation was used, 9 out of 
10 of the samples in GSE2034 were used to train and the 
remaining part was used for testing. At the same time, all the 
samples in GSE7390 were used to perform an independent 
test. A support vector machine algorithm implemented in the 
lib-svm software package [43] was used for classification. 
The area under curve (AUC) was used for evaluation. 

F. Survival analysis 
The univariate Cox scores and hazard ratio for each of the 

miRNAs-Gene Module and mRNA was calculated using the 
Matlab function coxphfit (Matlab version 2009b). The FDR 
of Cox proportional hazards regression analysis was 
calculated using Matlab function mafdr. The log-rank 
calculation and generation of the survival curve was 
performed using a Matlab package 
(http://www.mathworks.com/matlabcentral/fileexchange/223
17).  

G. Network topology analysis and visualization 
 We selected the best 200 features (selected by T-test) of 

GSE2034 to construct the miRNA-GOBP network. There are 
two kinds of nodes in the network, the miRNA and the GO 
term. The intersection of these two kinds of nodes is defined 
as the t-score of the T-test between the bad-outcome group 
and the good-outcome group. The network was visualized by 
Cytoscape 2.8.0 and the topology analysis was conducted by 
the Network Analyzer plugin for Cytoscape [44]. 
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All figures and tables 

 
Figure 1. Pipeline of the CoMi activity estimation and application of the metric for outcome prediction; a. Identifying the significant Context specific miRNA 
probe(miRNA activity on a specific GO term); b. mRNA expression profiles of patient population; c. Based on CoMi probe and mRNA expression profiles, 
using T-test to calculate CoMi activity; d. The CoMi activity patterns; e. CoMi Network construction; f. Outcome prediction 
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Figure 2. Distribution of Spearman correlation coefficients calculated for the correlation between the 356 miRNA CoMi activity pattern (GOBP) and miRNA 
expression profiles pairs (The miRNA target sets is predicted by targetscan U RNA22). a (left). Spearman correlation coefficient.  b (right). P-value 
distribution. P-value was -log10 transformed. 

 

Figure 3. Distribution of Spearman correlation coefficients calculated for the correlation between the 356 miRNA CoMi activity pattern (GOBP) and miRNA 
expression profiles pairs (The miRNA target sets is predicted by Exprtarget). a (left). Spearman correlation coefficient.  b (right). P-value distribution. P-value 
was -log10 transformed.  
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Figure 4. Distribution of Spearman correlation coefficients calculated for the correlation between the 356 miRNA CoMi activity pattern (GOBP) and miRNA 
expression profiles pairs (The miRNA target sets is predicted by miRanda). a (left). Spearman correlation coefficient.  b (right). P-value distribution. P-value 
was -log10 transformed. 

 

Figure 5. Distribution of Spearman correlation coefficients calculated for the correlation between the 356 miRNA CoMi activity pattern (GOBP) and miRNA 
expression profiles pairs (The miRNA target sets is predicted by targetscan). a (left). Spearman correlation coefficient.  b (right). P-value distribution. P-value 
was -log10 transformed. 
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Figure 6. Distribution of Spearman correlation coefficients calculated for the correlation between the 356 miRNA CoMi activity pattern (GOBP) and miRNA 
expression profiles pairs (The miRNA target sets is predicted by RNA22). a (left). Spearman correlation coefficient.  b (right). P-value distribution. P-value 
was -log10 transformed. 

 
 

Figure 7. Topology analysis of estimated CoMi network.  a (left). Power law fit to the in-degree distribution. b (right). Power law fit to the out-degree 
distribution. 
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Figure 8 The CoMi network (CoMiNet): a. The CoMi activity network (CoMiNet) constructed on Wang’s data; b. sub-network of miR-34a, miR-34b; c. 
sub-network of miR-9; d. synergistic function of let-7 family; e. miRNAs synergistic network on “anti-apoptosis”; f.  miRNAs synergistic network on “DNA 
repair”. 
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Figure 9. Relationship between the performance and the number of the selected features. The AUC of the classification as the selected feature from 1 to 201. 
The black line with small circles denotes the AUC of the CoMi activity pattern (GOBP) classifier on GSE2034, the red line with small circles denotes the AUC 
of the CoMi activity pattern classifier on GSE7390, the black line with stars denotes the AUC of the mRNA expression pattern classifier on GSE2034,and the 
red line with stars denotes the AUC of mRNA expression pattern classifier on GSE7390. 

 

Figure 10. The accuracy of the CoMi(GOBP) classifier and mRNA classifier on GSE2034. 
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Figure 11. The sensitivity of the CoMi (GOBP) classifier and mRNA classifier on GSE2034. 

 
 

Figure 12. The specificity of the CoMi (GOBP) classifier and mRNA classifier on GSE2034. 
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Figure 13. ROC curve of of the CoMi activity pattern classifier (red line - best performance with the number of selected features =71, AUC=0.7407) compared 
with the mRNA expression profile classifier (blue line - best performance with the number of selected features =41, AUC=0.6481). 

 

Figure 14. Survival curve of the best feature (hsa-miR-154,’response to organic cyclic sunstance’) of CoMi activity pattern on GSE2034 (log-rank test) 
estimated by Kaplan-Meier function. 
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Table 1.  Sample sizes and partition by class 

Data set    samples  good-outcome group               bad-outcome group                  removed samples 
                    (dmfs_time>=5 years ,dmfs_e=0)    (dmfs_time<5 years, dmfs_e=1) 

GSE2034   286          169                                   93                                24 

GSE7390   198          128                                   36                                34 

Classification of data sets into good and bad outcome groups according to whether the patient developed distant-metastasis in 5 years.  Observations (samples) 
were removed if they were censored before the 5-year cutoff (To removed the samples whose risk is between the low risk group and high risk group, the 

samples which developed distant-metastasis after 5 years also be eliminated ) 

Table2.  miRNA target predictioon tool used in this analysis 

Tool              Version                                                             Web site 
miRanda        The miRBase Targets Release Version v5             http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/ 
Exprtarget       Only one version                                 http://www.scandb.org/apps/microrna/download.html 
TargetScan      Release 5.1 April 2009 

(Conserved site context scores )                       http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=vert_50 
RNA22         Only one version(Human 3’UTR)                   http://cbcsrv.watson.ibm.com/rna22_download_content.html 

Table 3.The intersection of selected features from two different breast cacner data sets 

Threshold(P-value) Feature    The number of              The number of           Size of intersection set*    P-value of intersection  
                numbers   selected feature in GSE2034   selected feature in GSE7390 

0.01            6314            321                    296                     22                  0.0252 
0.02            6314            489                    486                     61                  3.64e-05 
0.03            6314            623                    627                     94                  5.74e-06 
0.04            6314            741                    770                     124                 3.81e-05 
0.05            6314            856                    875                     153                 1.38e-04 

*The features in the intersection set are significant (P-value > threshold) in both data sets and have the same direction(the same sign of the t score) 

Table 4. The best 200 CoMi features that differently expressed in bad-outcome group vs good-outcome group 

miRNA Go term P-value  t score 
hsa-miR-432 cell aging 3.96121E-06 4.762315817 

hsa-miR-187 apoptosis 4.18059E-06 -4.746074834 

hsa-miR-15b cell migration 9.08992E-06 4.57896588 

hsa-miR-497 organ morphogenesis 1.22E-05 4.49366425 

hsa-miR-154 response to organic cyclic substance 1.44032E-05 4.464775593 

hsa-miR-181d cell-cell signaling 1.50584E-05 -4.449050842 

hsa-miR-133b G-protein coupled receptor protein signaling pathway 2.11299E-05 4.366289113 

hsa-miR-204 cell adhesion 2.4762E-05 4.311891737 

hsa-miR-497 actin cytoskeleton organization 2.60473E-05 4.298199558 

hsa-miR-15a organ morphogenesis 3.49121E-05 4.248848264 

hsa-miR-101 skeletal system development 3.65766E-05 -4.231326265 

hsa-miR-375 in utero embryonic development 4.61508E-05 4.15516298 

hsa-miR-138 transport 5.18851E-05 4.149373799 

hsa-miR-302b cell adhesion 6.88501E-05 4.080600137 

hsa-miR-103 actin cytoskeleton organization 7.12692E-05 4.067331226 

hsa-let-7d immune response 7.92716E-05 -4.033959218 

hsa-miR-149 positive regulation of transcription from RNA polymerase II promoter 8.18714E-05 4.012338633 

hsa-miR-143 ion transport 0.000115154 -3.936946308 

hsa-miR-144 response to organic cyclic substance 0.00012416 3.927697432 

hsa-miR-107 actin cytoskeleton organization 0.000127336 3.907411986 

hsa-miR-211 cell adhesion 0.000127949 3.90602206 
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hsa-miR-202 DNA recombination 0.000129739 3.901911748 

hsa-miR-19a cell surface receptor linked signaling pathway 0.000131115 3.906434358 

hsa-miR-98 immune response 0.000133631 -3.895075481 

hsa-miR-133b protein amino acid phosphorylation 0.000134188 3.892785555 

hsa-miR-222 regulation of apoptosis 0.000147913 -3.897221023 

hsa-miR-375 response to stress 0.000157977 -3.850633731 

hsa-miR-302d cell adhesion 0.000169298 3.844606977 

hsa-miR-493 negative regulation of apoptosis 0.000170211 3.84946958 

hsa-miR-133a G-protein coupled receptor protein signaling pathway 0.000175994 3.830000694 

hsa-miR-212 interspecies interaction between organisms 0.000179558 -3.821836537 

hsa-miR-511 ion transport 0.000203065 -3.7823137 

hsa-miR-299-5p cell cycle 0.000224462 3.749167803 

hsa-miR-15b organ morphogenesis 0.000231334 3.746314232 

hsa-miR-302a cell adhesion 0.000251611 3.743857762 

hsa-miR-206 positive regulation of transcription 0.000263273 -3.711831094 

hsa-miR-22 positive regulation of transcription from RNA polymerase II promoter 0.000277215 3.701994245 

hsa-miR-146a organ morphogenesis 0.000289134 3.691977505 

hsa-miR-181b cell-cell signaling 0.000300529 -3.684966333 

hsa-miR-375 actin cytoskeleton organization 0.000349281 3.635290055 

hsa-miR-377 protein transport 0.000373131 -3.627064197 

hsa-miR-34a cell migration 0.000378981 3.618496288 

hsa-miR-512-3p cell death 0.000390935 -3.615871201 

hsa-miR-520e negative regulation of apoptosis 0.000400686 -3.620369754 

hsa-miR-520g inflammatory response 0.000493814 3.552972641 

hsa-miR-519d negative regulation of transcription 0.000501294 3.539718453 

hsa-let-7d regulation of cell proliferation 0.000526424 3.525775804 

hsa-let-7a transmembrane transport 0.000535652 -3.525007556 

hsa-miR-200a* anti-apoptosis 0.000550266 3.507315067 

hsa-miR-198 RNA splicing 0.000560855 -3.515167207 

hsa-miR-424 organ morphogenesis 0.000570955 3.50006842 

hsa-miR-27a regulation of transcription 0.000596311 3.495965898 

hsa-let-7i immune response 0.000605536 -3.488048689 

hsa-miR-182 small GTPase mediated signal transduction 0.000612113 3.481036307 

hsa-miR-196b negative regulation of apoptosis 0.000615729 3.486965878 

hsa-miR-370 transport 0.000617809 -3.482294808 

hsa-miR-382 apoptosis 0.000643086 -3.478074755 

hsa-miR-183 cell-cell signaling 0.000679048 -3.459143578 

hsa-miR-432 positive regulation of transcription 0.000737217 -3.427225945 

hsa-miR-302b inflammatory response 0.000754465 3.425771536 

hsa-miR-141 signal transduction 0.000760681 -3.423338566 

hsa-miR-433 response to drug 0.00076083 3.425064904 

hsa-miR-34b regulation of transcription from RNA polymerase II promoter 0.000779479 -3.407722605 

hsa-miR-181a anti-apoptosis 0.000799558 -3.412627372 

hsa-miR-143 protein transport 0.000799597 -3.409024582 

hsa-let-7f activation of MAPK activity 0.000867984 -3.384925615 

hsa-miR-302d inflammatory response 0.000868699 3.387467362 

hsa-miR-124 apoptosis 0.000875631 3.38330257 

hsa-miR-520b DNA repair 0.00088007 3.381351742 

hsa-miR-15b embryonic limb morphogenesis 0.000970328 3.352610761 

hsa-miR-34b negative regulation of cell proliferation 0.00098402 3.345228935 
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hsa-miR-515-5p protein amino acid phosphorylation 0.000985309 -3.355247345 

hsa-miR-152 cell-cell signaling 0.00098911 -3.349946752 

hsa-miR-198 positive regulation of transcription, DNA-dependent 0.001003618 3.338447442 

hsa-miR-223 nervous system development 0.0010044 -3.339353662 

hsa-miR-526b actin cytoskeleton organization 0.001007173 3.335109149 

hsa-miR-302a response to drug 0.001015467 -3.339937369 

hsa-miR-9 cell-cell adhesion 0.001040423 3.330263084 

hsa-miR-340 metabolic process 0.00105367 3.327570357 

hsa-let-7b cell cycle 0.001064662 3.316792421 

hsa-miR-432 axonogenesis 0.001105321 3.31339562 

hsa-miR-135b nervous system development 0.001124916 -3.308330605 

hsa-miR-432 regulation of cell growth 0.001153692 3.302767971 

hsa-miR-9 cell adhesion 0.001160895 3.306759688 

hsa-miR-133a protein amino acid phosphorylation 0.001163682 3.292698852 

hsa-miR-206 G-protein coupled receptor protein signaling pathway 0.001187538 3.295655291 

hsa-miR-148b apoptosis 0.001212391 -3.282897736 

hsa-miR-24 regulation of apoptosis 0.001228743 -3.284531873 

hsa-miR-489 immune response 0.00124972 -3.284741056 

hsa-miR-452 protein ubiquitination 0.001251844 -3.272803915 

hsa-miR-506 ion transport 0.001254199 3.272888822 

hsa-miR-144 cell migration 0.001281527 3.27234854 

hsa-miR-202 cell-cell signaling 0.001320308 -3.261152549 

hsa-miR-196a negative regulation of apoptosis 0.001370557 3.26026755 

hsa-miR-143 signal transduction 0.001390137 -3.24556137 

hsa-miR-493 positive regulation of I-kappaB kinase/NF-kappaB cascade 0.001437211 -3.249426565 

hsa-miR-132 response to drug 0.00149568 -3.230106205 

hsa-miR-145 biological_process 0.00150329 -3.225658933 

hsa-miR-433 G-protein coupled receptor protein signaling pathway 0.001530499 -3.212746967 

hsa-miR-19a regulation of transcription from RNA polymerase II promoter 0.001619631 -3.205718008 

hsa-miR-9 chemotaxis 0.001660713 3.189904545 

hsa-miR-211 inflammatory response 0.001672787 3.189400073 

hsa-miR-147 protein transport 0.001739162 -3.180398557 

hsa-miR-19b cell surface receptor linked signaling pathway 0.00177761 3.171184824 

hsa-miR-1 immune response 0.001792519 3.1726194 

hsa-miR-27a response to organic substance 0.001815341 3.165218075 

hsa-miR-93 G-protein coupled receptor protein signaling pathway 0.001863766 3.156962307 

hsa-miR-204 transmembrane transport 0.001871599 3.149333592 

hsa-miR-93 response to drug 0.001936376 3.151391263 

hsa-miR-10a response to drug 0.001986191 3.132076816 

hsa-miR-196b interspecies interaction between organisms 0.002031538 3.12541937 

hsa-miR-15b negative regulation of apoptosis 0.002087347 3.127229034 

hsa-miR-204 protein amino acid phosphorylation 0.002138932 3.114046496 

hsa-miR-489 response to drug 0.002140108 3.109749864 

hsa-miR-302d response to organic cyclic substance 0.002177862 3.113003845 

hsa-let-7g activation of MAPK activity 0.002187026 -3.108154008 

hsa-miR-181d anti-apoptosis 0.002221853 -3.1068147 

hsa-let-7f transmembrane transport 0.002225288 -3.099225717 

hsa-miR-144 cell-cell adhesion 0.002260832 3.094042119 

hsa-miR-103 mesoderm formation 0.002296366 3.08274055 

hsa-miR-107 mesoderm formation 0.002296366 3.08274055 
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hsa-miR-9 response to organic cyclic substance 0.002316435 3.092881855 

hsa-miR-107 immune response 0.002349499 -3.085078314 

hsa-miR-221 mRNA processing 0.002357038 -3.086359489 

hsa-let-7c transmembrane transport 0.002464806 -3.07418121 

hsa-miR-103 cell death 0.002474554 3.064847242 

hsa-miR-98 activation of MAPK activity 0.002491039 -3.060401263 

hsa-miR-515-5p signal transduction 0.00251662 -3.062056862 

hsa-let-7f anti-apoptosis 0.002536623 -3.057031775 

hsa-miR-143 intracellular protein transport 0.002540391 -3.059572052 

hsa-miR-148b cell-cell signaling 0.002558506 -3.058209541 

hsa-miR-34a biological_process 0.00256168 -3.058218359 

hsa-let-7a immune response 0.002581689 -3.05338749 

hsa-miR-200b transport 0.002599377 3.051031067 

hsa-miR-19b regulation of transcription from RNA polymerase II promoter 0.002688134 -3.0474327 

hsa-miR-149 organ morphogenesis 0.002714049 3.038122784 

hsa-miR-34a negative regulation of apoptosis 0.002751504 3.04050921 

hsa-miR-302a inflammatory response 0.002873499 3.023544211 

hsa-miR-485-5p heart development 0.00291466 -3.015910391 

hsa-miR-142-3p response to estradiol stimulus 0.002921403 -3.016160615 

hsa-miR-31 cellular component movement 0.00292727 3.012720474 

hsa-miR-1 G-protein coupled receptor protein signaling pathway 0.00293732 3.014927842 

hsa-miR-375 aging 0.003002168 -3.005061062 

hsa-miR-382 innate immune response 0.003100239 -3.004290556 

hsa-let-7d response to oxidative stress 0.003100715 -2.99509693 

hsa-miR-503 cellular component movement 0.003195247 2.986677277 

hsa-miR-373 regulation of transcription 0.003281398 -2.974761621 

hsa-miR-34a cell death 0.003303906 2.971671032 

hsa-miR-9 G-protein coupled receptor protein signaling pathway 0.003337516 2.973163251 

hsa-miR-143 response to organic cyclic substance 0.003346928 2.974353333 

hsa-miR-497 negative regulation of cell proliferation 0.003351688 2.969920402 

hsa-miR-125b DNA repair 0.003358748 2.967268946 

hsa-let-7b cell division 0.003397989 2.960762131 

hsa-miR-363 cell proliferation 0.003409899 -2.969851575 

hsa-miR-20b cell-matrix adhesion 0.003457245 -2.963136573 

hsa-miR-382 interspecies interaction between organisms 0.003462398 -2.965100592 

hsa-miR-93 positive regulation of transcription 0.003487585 -2.954319108 

hsa-let-7c activation of MAPK activity 0.003499342 -2.957362351 

hsa-miR-187 protein transport 0.003502399 -2.955489683 

hsa-miR-34a post-embryonic development 0.00354118 2.951935969 

hsa-miR-302c* protein transport 0.003564189 -2.955671788 

hsa-miR-345 positive regulation of transcription from RNA polymerase II promoter 0.003662921 2.945384009 

hsa-miR-195 cell death 0.003752201 2.929342993 

hsa-miR-22 induction of apoptosis 0.003758528 2.932942574 

hsa-miR-182 protein amino acid phosphorylation 0.003788682 -2.931209383 

hsa-miR-222 response to oxidative stress 0.003803201 -2.93003521 

hsa-miR-375 regulation of transcription 0.003939172 2.919736316 

hsa-miR-181b cell adhesion 0.003961065 -2.919618381 

hsa-miR-432 response to nutrient 0.003983184 -2.915563848 

hsa-miR-302c biological_process 0.004009293 -2.910535268 

hsa-miR-302a lipid metabolic process 0.004043111 -2.913755816 
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hsa-miR-18a transmembrane transport 0.00417635 -2.901349707 

hsa-miR-512-3p positive regulation of angiogenesis 0.004264736 -2.889593667 

hsa-miR-15a regulation of cell cycle 0.004316509 2.888290992 

hsa-miR-302e transport 0.004320468 2.89023609 

hsa-miR-520a-3p transport 0.004320468 2.89023609 

hsa-miR-520c-3p transport 0.004320468 2.89023609 

hsa-miR-520d-3p transport 0.004320468 2.89023609 

hsa-miR-422a multicellular organismal development 0.00432108 2.887763596 

hsa-miR-187 transmembrane transport 0.004352332 -2.894732959 

hsa-miR-15a endocytosis 0.004391418 -2.882772793 

hsa-miR-32 protein transport 0.004391439 -2.885872789 

hsa-miR-302c cell cycle 0.004403445 2.878597463 

hsa-miR-520e transport 0.00444894 2.877135639 

hsa-miR-302b response to drug 0.004465935 -2.877754373 

hsa-miR-346 positive regulation of cell proliferation 0.004567523 2.870476427 

hsa-miR-320a transport 0.004591541 2.866994602 

hsa-miR-320b transport 0.004591541 2.866994602 

hsa-miR-320c transport 0.004591541 2.866994602 

hsa-miR-320d transport 0.004591541 2.866994602 

hsa-miR-182* cell adhesion 0.004596821 2.868921008 

hsa-miR-23b transport 0.00469032 -2.860601372 

hsa-miR-519d chemotaxis 0.004691776 2.860127843 

hsa-miR-422a inflammatory response 0.004705513 -2.859992668 

hsa-miR-130b response to stress 0.004723511 -2.861735596 

hsa-miR-187 response to retinoic acid 0.004776236 -2.852779437 

hsa-miR-154 negative regulation of apoptosis 0.004779391 2.859643707 
hsa-miR-24 positive regulation of apoptosis 0.004880341 -2.850189629 
hsa-miR-143 negative regulation of apoptosis 0.00489304 2.844460791 

hsa-miR-130b transcription from RNA polymerase II promoter 0.004896513 2.847280535 
P-value and T score was calculated by T-test(matlab function:mattest) between the bad outcome group and good outcome group. 

Table 5. The number of good features filter by FDR of Cox proportional hazards regression 

Feature space               FDR<0.001      FDR<0.005         FDR<0.01 

CoMi activity pattern           1                7                 16 

mRNA expression pattern       0               0                  5 

Table 6. The target of miR-154 on Go term ‘response to organic cyclic substance’ 

Gene Id  Gene Symbol    Gene Name 

551      AVP         arginine vasopressin 
894      CCND2    cyclin D2 
898      CCNE1    cyclin E1 
960      CD44    CD44 molecule (Indian blood group) 
3673      ITGA2    integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)  
5021      OXTR    oxytocin receptor  
5027   P2RX7    purinergic receptor P2X, ligand-gated ion channel, 7 
5037  PEBP1    phosphatidylethanolamine binding protein 1 
5727      PTCH1    patched 1 
6774   STAT3    signal transducer and activator of transcription 3 (acute-phase response factor) 
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