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Abstract—MicroRNAs (miRNAs) are reported to play essential 
roles in cancer initiation and progression and microarray 
technologies are intensively applied to study the miRNA 
expression profile in cancer. It is very common that the set of 
differentially expressed miRNAs related to the same cancer 
identified from different laboratories varies widely. Meanwhile, 
how the altered miRNAs coordinately contribute to the cause of 
prostate cancer is still not clear. In this study, we collected and 
processed four human prostate cancer associated miRNA 
microarray expression datasets with newly developed cancer 
outlier detection methods to identify differentially expressed 
miRNAs (DE-miRNAs). The targets of these DE-miRNAs were 
then extracted from database or predicted by bioinformatics 
prediction and then mapped to functional databases for 
enrichment analysis and overlapping comparison. Newly 
developed outlier detection methods were found to be more 
appropriate than t-test in cancer research, and the consistency 
of independent prostate cancer expression profiles at pathway 
or gene-set level was shown higher than that at gene (i.e. miRNA 
here) level. Furthermore, we identified 41 Gene Ontology terms, 
4 KEGG pathways and 77 GeneGO pathways which are 
associated with prostate cancer. Among the top 15 GeneGO 
pathways, 5 were reported previously and the rest could be 
putative ones. Our analyses showed that more appropriate 
outlier detection methods should be used to detect oncogenes or 
oncomiRNAs that are altered only in a subset of samples. We 
proved that expression signatures of independent microarray 
experiments are more consistent rather at pathway level than at 
miRNA / gene level. We also found that the utilization of similar 
meta-analysis methods between miRNA and mRNA profiling 
datasets result in the detection of the same pathways. 
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I.  INTRODUCTION 
MicroRNAs (miRNAs) are approximately 22-nucleotide 

endogenous RNAs that play important gene-regulatory roles 
in animals and plants. They target the 3’ Untranslated Region 
(3’UTR) of mRNAs to repress the activity of complementary 
mRNAs [1]. According to the latest miRBase [2] release, 
more than 1000 mature miRNAs have been identified in the 
human genome. Abnormalities of miRNA expression might 
contribute to the generation of “cancer stem cell”, which may 
eventually transform to tumors [3-5]. 

Microarray technologies have become routine methods 
for profiling molecular expression in almost all fields of 
research in life sciences. In the field of cancer research, 

microarray technologies allow simultaneous assessment of 
transcription of tens of thousands of genes, and comparison 
of relative expressions between normal and malignant cells. 
With more and more published microarray expression 
datasets available, it appears to be possible and also 
necessary to apply meta-analysis methods to find significant 
patterns from multiple datasets. Efforts have been made to 
identify common gene signatures. However, it is very 
common that the set of differentially expressed miRNAs 
(DE-miRNAs) reported from different laboratories varies 
widely, although they are related to the same cancer [6-11]. 

In this study, we collected and processed 4 miRNA 
expression microarray datasets by meta-analysis method at 
both gene and gene-set (i.e. the functional gene set or 
pathway) levels to prove our hypothesis that the expression 
signatures of independent datasets are more consistent at 
pathway level than at miRNA / gene level. Based on this 
hypothesis, we also identified novel prostate cancer 
associated pathways targeted by miRNAs coordinately. 

II. RESULTS 

A. Newly developed outlier detection algorithms perform 
better than t-test 
In most of the previous work, researchers often apply fold 

change or t-test / t-test like statistics to detect cancer related 
genes and miRNAs after obtaining microarray expression 
profiles. Recently, it has been recognized that many genes 
show a differential expression only in a small proportion of 
normal and cancer samples [12] . The patterns hidden in the 
subsets of the samples cannot be discovered with t-test like 
methods since with these methods, the gene expression 
patterns will be averaged out. Tomlins and others proved that 
t-test was hardly useful in such cases [13]. 

To address this complexity, a series of new outlier 
detection algorithms were proposed in recent years. Among 
these methods, there are Least Sum of Ordered Subset Square 
t-statistic-LSOSS [14], Cancer Outlier Profile 
Analysis-COPA [15], Maximum Ordered Subset 
T-statistics-MOST [12], Outlier Robust T-statistics-ORT [16], 
and Outlier Sum-OS [17]. We compared the performance of 
these newly developed algorithms with t-test in outlier 
detection. For all these methods, we set the quantile of 
outliers to 0.05 (5%). After obtaining the outliers of each 
dataset by various methods, those differentially expressed 
miRNAs (DE-miRNAs) shared by the results of at least 3 
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methods were considered as putative ones, and then the 
percentage of these putative outliers in the original result of 
each method was calculated as the accuracy (See Fig. 1). In 
Fig. 1, all the new methods show smaller standard deviations 
than that of t-test, which indicates that these algorithms have 
more stable performance when dealing with these different 
expression datasets. Among of them, ORT performed best for 
expression outlier extraction from these four datasets, and all 
of the downstream analysis was based on the result of ORT. 

B. Target genes of DE-miRNAs were obtained and mapped 
to functional databases 
Since miRNAs play an important role of 

posttranscriptional regression by targeting mRNAs, we 
studied the function of the DE-miRNAs by identifying 
putative targets and subsequently mapping these targets to 
available functional databases. Target genes were retrieved 
from both TargetScan database and result of local prediction 
process. (See methods section for detailed information). 
Additional file 2 shows the target genes of DE-miRNAs for 
each dataset. 1085 unique targets for DE-miRNA of 
GSE8126, 2928 for GSE14857, 2678 for GSE21036 and 
3052 for GSE23022 were obtained, respectively. Afterwards, 
these targets from each individual dataset were mapped to 
several functional databases including GO [18] , KEGG [19, 
20] and GeneGo’s database (GeneGo, Inc.). 

C. Higher consistency can be reached at functional level 
than that at miRNA / target level 
We performed overlapping analysis across the four 

datasets at different levels with the mapping data above. Fig. 2 
shows the pair-wise comparison between four datasets at the 
level of probe, DE-miRNA, targets, GO-MF (Molecular 
Function), GO-BP (Biological Process) and GeneGO pathway, 
respectively. Then we calculated the p-value by paired t-test 
to show the statistics of the overlapping percentages 
difference at different levels (see Table I). We compared 
overlapping percentage at GO-MF, GO-BP and GeneGO 
pathway level with that of probe, DE-miRNA and target. 
According to the statistics shown in Table I, it is clear that 

there is no significant difference between the overlapping 
percentages at GO-MF / GO-BP / GeneGO pathway level and 
at probe level, while the difference between the overlapping 
percentages at GO-MF / GO-BP / GeneGO level and at 
DE-miRNA / target level are statistically significant. Our 
results demonstrate that the expression signatures of 
independent datasets are more consistent at GO or pathway 
level than at miRNA / target level. 

D. Identifying prostate cancer related pathways 
In order to identify prostate cancer associated GO terms 

and pathways, we first extracted those significant target genes 
shared by at least 3 datasets, which we then mapped to GO, 
KEGG pathway and GeneGO pathway databases for the 
functional enrichment analysis. In this process, we extracted  

TABLE I. Statistics of comparison of overlapping percentages at different 
levels. 

Levels Paired t-test (p-value) 

GeneGO 
pathway 

Probe 0.451 

DE-miRNA 2.23E-03 

Target 5.42E-03 

GO-MF 

Probe 0.201 

DE-miRNA 3.24E-05 

Target 1.39E-05 

GO-BP 

Probe 0.389 

DE-miRNA 1.60E-04 

Target 6.92E-05 

 

1158 target genes, among which 275 were shared by 4 
datasets and 883 were overlapped in 3 datasets. Fig. 3 shows 
the most significant GeneGO pathway, TGF, WNT and 

 
Figure 1. Overlapping percentages of putative outliers in the 
original ones by the newly developed and traditional outlier 
detection methods. Outliers shared by at least 3 methods were 
considered as putative ones. 

 
Figure 2. Pair-wise comparison between 4 datasets at different 
levels. X axis shows the total 6 pair-wise comparison sets for 4 datasets, 
while Y axis denotes the overlapping percentage in a decimal format. 
Bars in different gray intensity stand for the overlapping at different 
levels, including probe, DE-miRNA, targets, GO-MF, GO-BP, and 
GeneGO pathway. 
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cytoskeletal remodeling, see additional file 1 for the notation 
of each sign in this figure. In Fig. 3, TGF-beta 1 encodes a 
member of TGFB family, which regulates important functions 
such as proliferation, differentiation, migration and others in 
many kinds of cells. TGF-beta 1 is supposed to binds 
TGF-beta receptor type II and transfer the signal to type I and 
activates SMAD2 directly or via binding SARA, then encodes 
a double zinc finger protein that interacts with SMAD2, and 
finally SMAD2 will bind to SP1. Both SMAD2 and SP1 are 
transcription factors found to be important during the 
formation and development of prostate tumors. TGF-beta 
receptor type II, SMAD2 and SP1 are all target genes of the 
identified DE-miRNAs in our analysis. Fig. 4 illustrates 
various biological theme enrichment for the gene list. The left 
part of the figure is the bar plot of enriched GO terms, KEGG 
pathways and GeneGO pathways against –log10 (p-value); 
the right part shows top 5 terms of each biological theme. 

Detailed information is also available in additional file 3, 4 
and 5. In these files, terms were sorted by p-value. Overall, we 
identified 41 (FDR < 0.001) GO terms, 4 (FDR < 0.01) 
KEGG pathways and 77 (FDR < 0.001) GeneGO pathways, 
which are enriched with target genes of prostate cancer 
associated DE-miRNAs. 

E. Validation of the result 
Among the 77 enriched GeneGO pathways, 50 (64.9%) 

pathways were also found to be significantly enriched in our 
previous study in which we processed 10 mRNA microarray 
datasets [11]. In the set of top 15 GeneGO pathways in our 
previous work, 9 (60%) were shared in this study (See 
additional file 5 for detail). 

To identify potential prostate cancer related pathways, 15 
most significantly enriched (with lowest p-value) pathways 
were picked out. 5 of them were found to be related to 
prostate cancer according to text-mining searches in PubMed, 
and the rest could be potential prostate cancer related 
pathways which need more wet-lab experiments to validate. 
(Table II) Citation counts of corresponding genes in each 
potential pathway could be found in additional file 6. 
Percentage of prostate cancer related genes in each pathway 
according to PubMed text-mining ranges from 33.33% to 
83.33%. 

III. DISCUSSION 
In this study, we collected four miRNA microarray 

datasets with the samples of normal prostate tissue and 
prostate cancer tissue, and processed these datasets in a 
meta-analysis method to identify the signature at both miRNA 
/ target gene and pathway levels. 

As it has been recognized recently that individual variation, 
especially, the alteration of oncogenes or oncomiRNAs may 
occur in a subset of cancer samples, should be considered in 
microarray experiments, the present work is the first article 
comparing the performance of different outlier detection 
methods with real datasets. We performed outlier detection by 
both traditional method (t-test) and newly developed 
approaches (LSOSS, COPA, MOST, ORT, OS). The accuracy 
analysis draws a conclusion that newly developed algorithms 
generally perform better than t-test. The variation of 
performance for different datasets may be a result of different 
sizes of the datasets and with the small number of datasets, the 
advantage against t-test is not apparent for the new methods. 
Compared with traditional t-test or t-test like methods, newly 
developed methods are generally more appropriate for 

 
Figure 4. Illustration of various biological theme enrichment. 
DE-miRNAs shared by at least 3 datasets were extracted to identify 
target genes and these genes were then mapped to databases for the 
identification of enriched GO terms (FDR < 0.001), KEGG pathways 
(FDR < 0.01). Top GO terms, KEGG and GeneGO pathways were 
shown in this illustration. Terms shown in the box to the right of each 
bar plot are the most significant ones. 

 
Figure 3. The most significant GeneGO pathway map of 
Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling. 
Additional file 1 shows the legend for this map. The target genes of the 
putative DE-miRNA are represented with red bar histograms. The little 
hexagon in the color of light red labeled with “D” means that this object 
is associated with the Prostate cancer. 
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microarray data analysis in cancer study, esp. for large 
datasets. 

The result of consistency analysis at different levels is 
accordant with our hypothesis that the expression signatures 
of independent datasets are more consistent at pathway level 
than at gene level. This also partially explains why 
independent microarray experiments result in quite different 
outliers. As we all know, cancer is a complex disease caused 
by various environmental and genetic factors, and different 
causes may result in different alteration of biological function 
and symptoms. As for prostate cancer, different mechanisms 
attribute to cancer formation in various parts of the world such 
as different dietary habits and environment. However, there 
should be some common key pathways playing important 
roles in the process of cancer formation. 

Fig. 4 illustrates the GO terms or pathways (both from 
KEGG and GeneGO) that are enriched by the list of common 
genes from four datasets. According to the figure, top 5 
enriched GO terms are all related to transcription and its 
regulation, which may be explained by the abnormal gene 
expression in prostate tumors. The identified significant 
KEGG and GeneGO pathways are mainly important pathways 
in cancer, intercellular communication and cytoskeleton 
remodeling, all of which are usually involved in the process of 
transformation of cell shape or metastasis of tumor. A recent 
review [21] suggested that Wnt signaling regulates androgen 
activity in prostate cancer cells, enhances androgen receptor 
expression and promotes the growth of prostate tumor. As 
stated by Eric Chu, “PTEN is the first phosphatase identified 

as a tumor suppressor”. PTEN (phosphatase and tensin 
homolog) plays a key role in apoptosis, cell cycle arrest, and 
possibly cell migration [22]. Evidence has also been 
accumulated showing that the Insulin-Like Growth Factor 
(IGF) family is involved in the regulation of prostate growth 
and bone metastasis [23]. All the evidences above corroborate 
the credibility of the results of the present study. 

The combination of our previous study [11] with the 
present one shows the high consistency between results of 
similar meta-analysis for miRNA and mRNA microarray 
datasets measured from prostate tissues (normal and 
malignant). These overlapping pathways could be potential 
key pathways contributing to prostate carcinogenesis; in the 
foreseeable future, drugs designed to modify these pathways 
might be useful in interrupting the process of tumor formation. 
In addition, we identified 10 novel prostate cancer related 
pathways, see details in Table II. IGF-1 receptor is a tyrosine 
kinase receptor which is related to tumor progression and 
metastasis, as Sroka etc. [24] reported, in prostate cancer cells 
it is highly expressed with MT1-MMP, a metalloproteinase 
involved in prostate cancer metastasis. It has been shown that 
abnormalities of HIF expression mediate lethal processes such 
as cell survival, proliferation and angiogenesis [25, 26]. 
According to the work by Wartenberg etc. [27], the 
expression of endothelial nitric oxide synthase (eNOS) is 
down-regulated in spheroid prostate tumors and which 
contributes to tumorigenesis by mediating nitric oxide (NO). 
Activin A was found to inhibit prostatic branching and growth 
[28] and enhances prostate cancer cell migration [29]. In a 

TABLE II. Top 15 enriched GeneGO pathways with PubMed citation count. 

Category Term 
PubMed 
citation 
count * 

Cytoskeleton remodeling TGF, WNT and cytoskeletal remodeling 875 

Development IGF-1 receptor signaling  

Cytoskeleton remodeling Cytoskeleton remodeling 10 

Signal transduction PTEN pathway 525 

Transcription Receptor-mediated HIF regulation  

Muscle contraction Regulation of eNOS activity in endothelial cells  

Development PIP3 signaling in cardiac myocytes  

Cardiac Hypertrophy NF-AT signaling in Cardiac Hypertrophy  

Cytoskeleton remodeling Role of Activin A in cytoskeleton remodeling  

Transcription CREB pathway 2 

Development Role of HDAC and calcium/calmodulin-dependent kinase 
(CaMK) in control of skeletal myogenesis  

Development GM-CSF signaling  

Development Flt3 signaling  

Transcription Role of heterochromatin protein 1 (HP1) family in 
transcriptional silencing  

Cytoskeleton remodeling FAK signaling 3 
* Citation count was calculated by searching PubMed in the fields of title and abstract, and this may change with the update of PubMed. 
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paper published in 2009 [30], histone deacetylaces (HDACs) 
were detected with increased expression and therefore 
promote the prostate cancer cell growth and invasion. 
Additional file 6 shows the citation counts of corresponding 
genes of each potential pathway in prostate cancer. More 
experiments are needed to confirm whether these pathways 
are actually related to prostate cancer or not. 

IV. CONCLUSIONS 
In this study, by showing the performance of various 

outlier detection methods with four real microRNA 
microarray datasets, we demonstrated that new methods 
perform better than t-test in the microarray data analysis in 
cancer research, duo to the fact that differentially expressed 
genes can be only 
identified in subsets of cancer samples. We also 
demonstrated that expression signatures of independent 
microarray experiments are more consistent at pathway level 
than at gene level, which can partially explain the 
inconsistency between results of independent microarray 
experiments at gene level. After comparing our results with 
previous work, we concluded that same pathways could be 
obtained by similar meta-analysis methods on miRNA and 
mRNA profiling datasets. 

V. MATERIALS AND METHODS 

A. Collecting datasets 
The miRNA expression microarray datasets used in this 

study were retrieved from Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/), a public functional 
genomics data repository supporting MIAME-compliant data 
submissions. These datasets were collected from four 
platforms with miRNA probes designed using Sanger 
miRBase release, and were downloaded in single matrix file 
format. (Table III) Considering the diverse platforms of the 
datasets, local Blast [31]  was performed by mapping probe 
sequences to the miRNA precursors of latest miRBase 
(release 16 [2]) to identify the concordant miRNA names. Fig. 
5 displays the pipeline of the whole procedure in this study. 

B. Comparison of these outlier detection algorithms 
In this study, expression outliers of these four datasets 

were determined with six methods which include LSOSS, 
COPA, MOST, ORT, OS, and t-test. All these methods were 
implemented in R packages by Wang [14] and Lian [12], 
which was used to perform the outlier detection. The quantile 
of outlier extraction for all the methods was set to 0.05 (5%) 
by default. 

After the DE-miRNAs obtained by the six methods, we 
compared their performance first by collecting the 
DE-miRNAs shared by at least three methods, taking them as 
the putative outliers. Then the percentage of these 
DE-miRNAs in the original result of each method was 
calculated as the accuracy. 

C. Determining the differentially expressed miRNAs 
As Fig. 1 shows, we considered ORT as the most 

appropriate method for the detection of outliers. The outliers 
detected by ORT were used in the downstream analysis. 

D. Obtaining target genes for differentially expressed 
miRNAs 
TargetScan database was chosen to retrieve target genes 

of DE-miRNAs. A series of in-house Perl scripts were 
developed to obtain the targets of miRNAs available in the 
database; for those miRNAs unavailable in the TargetScan 
database, we manually predicted their putative target genes 
by performing a genome-wide, sequence-based 
bioinformatics procedure, using three of the most popular 
tools, miRanda [32], RNAhybrid [33], and TargetSpy [34]. 
These tools use both miRNA sequences and 3’UTR (3’ 
Untranslated Region) of protein-coding mRNA sequences as 
input files generally in fasta format and determine their 
binding ability by calculating the minimum free energy for 
hybridization. Human 3’UTR data was downloaded from 
PACdb build36 [35]. After the prediction of putative miRNA 
target genes by each tool with the default parameters, 
overlapped target genes were extracted in order to obtain a 
more solid result. 

E. Performing functional enrichment analysis  
To study the function of those DE-miRNAs we mapped 

their targets to GO, KEGG and GeneGO databases. In the 
consistency analysis part, to eliminate the error caused by 
different enrichment tools, we mapped targets of each dataset 
to GO-MF, GO-BP, and GeneGO pathway databases by  

 

 

 

 

 
Figure 5. The meta-analysis pipeline in this study. 
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TABLE III. Summary of prostate tissue datasets used in this study 

Dataset GEO accession 
NO. Platforms 

Human 
miRNA 
probes 

Number of samples 

Statistics Ref. Prostate 
normal 
tissue 

Prostate 
cancer 
tissue 

1 GSE8126 Agilent-016436 474 16 60 T-test [36] 

2 GSE14857 
Affymetrix 
miRNA    
Array 

407 12 12 T-test [37] 

3 GSE21036 Agilent-019118 373 28 113 Mixture model [38] 

4 GSE23022 
Affymetrix 
miRNA    
Array 

847 20 20 ANOVA [39] 

 

MetaCoreTM; while for the identification of prostate cancer 
related pathways, we first picked out targets shared by at 
least 3 datasets, which were then mapped to GO, KEGG 
pathway database by DAVID and to GeneGO pathway 
database by MetaCoreTM. Both of DAVID and MetaCoreTM 
used hypergeometric distribution to calculate the significance 
level (p-value) for each pathway and adjust it by FDR value, 
which was used as threshold. In MetaCoreTM, p-value means 
the probability of a random intersection of two different gene 

sets. The low p-value indicates the high potential of 
non-randomness of the finding. 
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