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Abstract—Based on the model of the Xenopus embryonic cell 
cycle proposed in literature [1], which can exhibit sustained 
limit cycle oscillations, we first build a multi-cell system of these 
oscillators that are coupled through a common complex protein 
that plays an important role in the core regulation of cell-cycle 
oscillators, and then show synchronization features in this 
coupled multi-cell system. Through bifurcation analysis and 
numerical simulations, we give synchronization intervals of the 
sensitive parameters in the individual oscillator and the 
coupling parameters in the coupled oscillators. Then, we analyze 
the effects of these parameters on synchronization time, period 
and amplitude, and find interesting phenomena, e.g., there are 
two synchronization intervals of activation coefficient in the Hill 
function of the activated CDK1 that activates the Plk1, and 
different synchronization intervals have distinct influences on 
synchronization time, period and amplitude. More interestingly, 
we find that the coupled system can switch between a stable 
state and a stable periodic orbit. These results suggest that the 
reaction process that the activated cyclin-CDK1 activates the 
Plk1 has very important influence on the synchronization ability 
of the coupled system. Our work not only can be viewed as an 
important step toward the comprehensive understanding for 
mechanisms of Xenopus embryonic cell cycle and but also can 
provide the guide for further biological experiments. 

Keywords- Synchronization; Cell cycle oscillators; Coupled 
system; Period;  Amplitude 

I.  INTRODUCTION  
Synchronization is a kind of typical collective behaviors 

and basic motions in nature which can explain many natural 
phenomena ([2, 3]). Recent studies have shown that cellular 
communication is accomplished by synchronization, and a 
number of simulations and fundamental experiment works 
have also confirmed synchronization mechanisms in some 
interacting or independent biological systems ([4-7]). The 
revealing synchronization mechanisms and dynamics control 
in multi-cellular systems are essential for understanding 
rhythmicity of living organisms at both molecular and 
cellular levels ([8-10]). 

Oscillations play an important role in many dynamic 
cellular processes and two typical examples of genetic 
oscillators are the cell cycle oscillators [11] and circadian 
clocks [12].The synchronization analysis of these oscillators 
have been presented to understand how and why the cell 
cycle works and explain some inherent phenomena ([13-16]). 

Although existing detailed models confirm that the known 
interactions in the cell cycle can produce oscillations and 
predict behaviors such as hysteresis, there are still some 
problems that deserve exploring. These include asking how 
the various elaborations and collective behaviors of the basic 
oscillator affect the robustness of the system and how cells 
use the information to control the cell cycle [17]. 

To elucidate various synchronization mechanisms from the 
viewpoint of dynamics by investigating the effects of various 
biologically plausible couplings and external stimuli, in this 
paper, we use the three-order ordinary differential 
equation(ODE) model of the Xenopus embryonic cell cycle 
that exhibits sustained limit cycle oscillations that was 
presented in literature [1] as a basic model for one oscillator 
and study the synchronization for a network of N oscillators 
that all units are indirectly coupled by interacting to a 
common environment.  

The paper is organized as follows. In Section Ⅱ , we 
describe the coupled model of cell cycle oscillators and 
present the synchronization of the coupled system. Section III 
makes a detailed sensitivity analysis for all parameters. 
Through the bifurcation analysis and numerical simulations, 
the synchronization intervals of system parameters are 
presented in Section III. In Section Ⅳ we analyze the effects 
of parameters on synchronization time, period and amplitude 
when achieved synchronization. Finally some conclusions are 
addressed in Section V. 

II. MODEL OF COUPLED CELL CYCLE OSCILLATORS AND 
SYNCHRONIZATION ANALYSIS 

A. Model of coupled cell cycle regulatory oscillators 
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Figure 1.  (a) The simplified diagram of the Embryonic  cell cycle 
(redrawed from [1]), (b) global coupling between N oscillators. 
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The simplified reaction diagram of the Embryonic cell 
cycle is depicted in Fig.1 (a). The cyclin-dependent protein 
kinase CDK1 is activated by the rapid, high-affinity binding 
of cyclin, and form the synthesized protein Cyclin-CDK1, 
which is the master regulator of mitosis. A protein like Polo-
like kinase (Plk1) cooperates with cyclin-CDK1 to activate 
the E3 ubiquityl ligase APC-Cdc20, and APC-Cdc20 
inactivates cyclin-CDK1. 

For cell i, we assume that CDK1 is activated by a constant 
rate of cyclin synthesis (α1), and the inactivation rate is 
proportional to the concentration of CDK1* (Ci) times a Hill 
function of APC*(Ai). The activation of Plk1 (Pi) by CDK1* 
is proportional to the concentration of inactive Plk1 (we also 
assume the total concentration of active and inactive Plk1 to 
be constant, we take to be 1-Pi) times a Hill function of 
CDK1*(Ci), and the inactivation is proportional to Plk1*(Pi). 
The activation of APC (Ai) by Plk1 is proportional to the 
concentration of inactive APC (1- Ai) times a Hill function of 
Plk1 (Pi), and the rate of inactivation of APC is described by 
simple mass action kinetics. The resulting three-ODE model 
is as follows. 
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The experiments indicated that the cyclin-dependent 
kinases (CDKs) are not solely responsible for establishing the 
global cell-cycle transcription programme although they have 
a function in the regulation of cell cycle transcription and 
precise cell cycle could be controlled by coupling a 
transcription factor network oscillator with the cyclin-CDK 
oscillator [11]. In order to reveal the internal mechanism of 
Xenopus embryonic cell cycle, we assume that all cells are 
coupled indirectly through the common extracellular medium, 
that is, they are coupled through a complex protein (R) which 
excites the protein of Cyclin-CDK1 in the core cell cycle 
regulatory pathway. The diagram for global coupling of the 
cell cycle oscillators is shown as Fig. 1(b).  

The ODE equations for N cell oscillators (denoted by i=1, 
2,.., N) are written as follows. 
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B. Synchronization of a population of N-cell cycle 
oscillators  
The synchronization error is defined as follows.  

2 2 2
1 1 1

2
= [( ) ( ) ( ) ]

N

i i i
i

E C C P P A A
=

− + − + −∑    (3) 

Assume that the coupled system can achieve 
synchronization when the E reaches to zero in a limit time.  

For simplicity, we analysis the case of ten identical 
oscillators (N=10) and the same results can be obtained when 
N is set to be greater than 10. Through the numerical 
simulation, the parameter settings that the coupled system can 
reach synchronization are listed at Table1, and the 
synchronization diagram is depicted in Fig.2. The oscillation 
period of the coupled system is about 4.315 min when 
achieved synchronization and the period of single oscillator is 
about 3.78min. 

 
Table 1 The parameter settings of the coupled system 

α1 α2 α3 β1 β2 β3 K1 K2 K3 
0.1 3 3 3 1 1 0.5 0.5 0.5 
n1 n2 n3 n k0 Ka km k KL 
4 4 4 3 2 0.5 1.5 1 0.5 
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Figure 2.  The synchronization behavior of the coupled oscillators.  

III. PARAMETER SENSITIVITY ANALYSIS OF THE COUPLED 
SYSTEM 

To investigate the effects of parameter changes on the 
amount of all variables in the coupled system, we make the 
sensitivity analysis of parameters by using an approach 
proposed in [18]. For the continuous state equation that has 
continuous first-order partial derivatives with parameters λ0. 

0

0 0

( , , )
( )

x f t x
x t x

λ=
=

                                                                       (4) 

The solution can be approximated by expanding Taylor 
series about the nominal solution 0( , )x t λ .  

0 0( , ) ( , ) ( )( )x t x t S tλ λ λ λ≈ + −                                            (5) 
Sensitivity function S(t) provides the first-order estimates 

of the effects of parameter variations on solutions. When the 
all values λ are in a small ball centered at λ0, the sensitivity 

This work was supported by the Chinese National Natural Science 
Foundation under Grant 61070007 and the Key Program of National Natural 
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function suffices to approximate the solution. Then we can 
calculate the sensitivity of the system parameters by solving 
the following sensitivity equation (See [18] for details). 

 

0 0 0
( , , ) ( , , )[ ] | [ ] | , ( ) 0 (6)f t x f t xS S S t

x λ λ λ λ
λ λ

λ= =

∂ ∂
= + =

∂ ∂
（t)                            

The range of the parameter distributions is set to be a 
random number between [0, 1] and get an average running for 
100 times. All results are normalized and the effects of 
parameter changes on the amount of three variables and 
complex protein R in equation (2) are showed in Figs.3-6. 

From Figs.3-6, we can see that the most sensitive 
parameter is K1, in turn, is α1, Ka, K2, K3, β2, β3, α3, km, et al. 
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Figure 3.  Sensitivity of CDK1 to the perturbation of parameters 
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Figure 4.  Sensitivity of PIK1 to the perturbation of parameters 
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Figure 5.  Sensitivity of APC to the perturbation of parameters 
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Figure 6.  Sensitivity of R to the perturbation of parameters 

IV. IDENTIFICATION OF SYNCHRONIZATION INTERVALS 
FOR THE SELECTED PARAMETERS 

In order to analyze the effects on the synchronization 
when parameters change, we make bifurcation analysis for the 
sensitive parameters and the coupling parameters by varying 
the chosen parameter and fixing other parameters. The 
bifurcation diagram for the parameters to the varieties of the 
complex protein CDK1 (C1) of the first oscillator in the 
coupled system are shown in Figs.7-12, respectively.  

 

Figure 7.  The bifurcation diagrams of the activation coefficients K1 and K2 
in Hill functions. 

 

Figure 8.  The bifurcation diagram of active constants α1 and α3.  

 

Figure 9.  The bifurcation diagram of degradation rates β2 and β3. 
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Figure 10.  Bifurcation diagram for degradation rate (Left) and the system 
achieves asymptotically steady state when km=1.25 (Right). 

 

Figure 11.  Bifurcation diagram for the activation coefficients KL and  Ka in 
Hill functions. 

 

Figure 12.  Bifurcation diagram for coupling strength k and active constant 
k0. 

From these figures we find an interesting phenomena, that 
is, there are two stable states for parameters K2 (Fig.7) and β2 
(Fig.9) when K2 varies in [0, 0.8] and β2 varies in [0, 2], 
respectively.  

Furthermore, we search for the synchronization intervals 
of these parameters through numerical simulations. We 
assume that the system achieves synchronization when the 
synchronization error is small than 1e-4. The obtained 
synchronization intervals for parameters are shown in Table 2. 

From Table 2, we can see that there are two 
synchronization intervals for K2 and other parameters only 
have one synchronization interval. Although there are two 
stable states for the degradation rate β2, there is only one 
synchronization interval. We can also observe that the more 
sensitive parameters have the smaller synchronization 
intervals  

Table 2 the synchronization intervals for the sensitive parameters 
K1 K2 K3 α1 α3 β2 

[0.48,0.57] [0.185,0.22] 
 [0.48,0.57] [0.48,0.57] [0.09,0.21] [2.2,3.5] [0.9,1.3] 

β3 km KL Ka k k0 

[0.89,1.3] [1.3,1.6] [0.44,0.55] [0.46,0.52] [0.92,1.3] [1.85,2.3] 

 

V. THE EFFECTS OF SENSITIVE PARAMETERS ON THE 
SYNCHRONIZATION TIME, PERIOD AND AMPLITUDE  

In order to analysis the effects of parameters on 
synchronization time (the time when the synchronization error 
of coupled system is smaller than 1e-4), period and amplitude, 
we let all parameters vary in their synchronization intervals 
listed at Table 2 and randomly select one initial value for each 
system variable in [0, 1].The average results for 20 
independent runs are shown in the following subsections. 

A. The effects of activation coefficients K1,K2,K3 in Hill 
functions 
From Fig.13 and Fig.14, we can observe that activation 

coefficients K1 and K3 have the same influence on period and 
amplitude, that is, the oscillation period and amplitude are 
almost linearly decreased with the increasing of K1 and K3.  

However, activation coefficient K2 has distinct influences 
on period and amplitude of synchronization system in 
different synchronization intervals (Fig.15). In the first 
interval [0.185, 0.22], the period is increasing and amplitude 
is not changed, but in the second interval, period and 
amplitude are decreasing.  

 

Figure 13.  The effects of K1on period and amplitude.  

 

Figure 14.  The effects of K3 on period and amplitude. 

 

Figure 15.  The effects of K2  on period and amplitude in two different 
synchronization intervals. 
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Especially, we analyze the effect of K2 on synchronization 
time (Fig.16), we find that the synchronization time is 
increasing with the increase of K2 in the first interval and the 
synchronization time is decreasing with the increase of K2 in 
the second interval. We also observe that the synchronization 
time in the first interval is quite shorter than that in the second 
interval, but the synchronization is very sensitive to the 
change of initial values. 

 
Figure 16.  The effects of K2  on synchronization time in two different 

synchronization intervals. 

 
                       (a)α2=1.6                                             (b)  α3=1.6 

 
                       (c) α2=1                                            (d)   α3=1.2 

Figure 17.  The coupled system switch from stable period oscillations to 
stable steady state when K2  is between two different synchronization 

intervals. 
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Figure 18.  The coupled system switch from stable steady state to stable 
period oscillations if inner noises are introduced when K2  is between two 

different synchronization intervals (The intensity of inner noise is 0.001, the 
parameter α2 changes from 0.9 to 1.7) 
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Figure 19.  The coupled system switch from stable steady state to stable 

period oscillations if inner noises are introduced when K2  is between two 
different synchronization intervals (The intensity of inner noise is 0.001, the 

parameter α3 changes from 1.2 to 1.6) 

When K2 varies in the interval [0.35, 0.42] and the 
parameter α2 changes from 1.6 to 1.0 (Fig.17 (a) and 
Fig.17(c)), or α3 changes from 1.6 to 1.2 (Fig.17 (b) and 
Fig.17 (d)), the coupled system switches from stable period 
oscillations to stable steady state (Fig.17).  

In order to consider the influence of random factors on the 
feature of the system, we introduce the inner noise in system 
(2). Fig.18 and Fig.19 show stochastic transitions between the 
stable steady state and the stable limit cycle when intensity of 
inner noise is 0.001 and the parameter α2 changes from 0.9 to 
1.7 or the parameter α3 changes from 1.2 to 1.6, respectively. 

 

 

Figure 20.  The effects of α1 and α3 on period. 

 

Figure 21.  The effects of α1 and α3 on amplitude. 
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B. The effects of α1 and α3 on the period and amplitude 
when achieved synchronization 
The effects of α1 and α3 on period and amplitude are 

depicted in Fig.20 and Fig.21, respectively. From Fig.20 and 
Fig.21, we can see that the oscillation period and amplitude 
are decreased with the increasing of α1, but the effects of α3 
are reverse. 

C. The effects of coupling parameters on  period and 
amplitude when achieved synchronization 
The effects of coupling strength k, ratio coefficient k0 and 

activation coefficients KL and Ka on the period and amplitude 
are shown in Fig.22 and Fig.23, respectively. 

With the increasing of these parameters, the oscillation 
periods for parameters KL, Ka and K are increasing, but the 
oscillation period for parameter K0 is decreasing. The trend of 
the oscillation amplitudes is similar to the periods except the 
coupling strength k.  

Because we find that the oscillation period is very 
sensitive to the changes of Ka (Fig.22), we further examine 
the Ka. When Ka is smaller than 0.46, the system runs into 
stable state asymptotically, like the right sub-figure in Fig.10. 
With the increasing of Ka, the coupled system has two 
clusters (Fig.24), or stays in anti-phase state (Fig.25). 

In addition, from above figures we also observe that the 
synchronized oscillator periods of all variables are almost the 
same but the oscillator amplitudes of all variables are not. 
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Figure 22.  The effect of parameters KL, Ka, K and K0 on period  when 
achieved synchronization. 
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Figure 23.  The effect of parameters KL, Ka, K and K0 on amplitude when 
achieved synchronization. 
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Figure 24.  There are two clusters, each contains five oscillators 
synchronized in phase (Ka=1.1). 
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Figure 25.  The coupled system stays in anti-phase state. 

VI. CONCLUSIONS 
In this paper, a new dynamical global coupled model for 

the oscillators is presented. Through bifurcation analysis and 
numerical simulations, we determine synchronization 
intervals of the coupled system. Our simulation results show 
that the more sensitive parameters have the smaller 
synchronization intervals. Furthermore, we find that there are 
two synchronization intervals of activation coefficient in the 
Hill function of activated CDK1 which activate the Plk1, and 
different synchronization intervals have distinct influences on 
synchronization time, period and amplitude of 
synchronization system. Afterwards, when this parameter 
shifts from two different synchronization intervals, the 
coupled system switches from stable period oscillations to 
stable steady state. These results suggest that the reaction 
process that the activated cyclin-CDK1 activates the Plk1 has 
very important influence on the synchronization ability of the 
coupled system. Our approaches help to gain insight into 
internal mechanisms of cell cycle system and to generate 
hypotheses for further research. 

Although we have mainly examined effects of most 
sensitive parameters and coupled parameters on the cellular 
dynamics, there are also other important factors which may 

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

195 Zhuhai, China, September 2–4, 2011



act important roles in biological processes and should be 
further investigated from theoretical viewpoints. The effect of 
internal and external noise on synchronization will be our 
further work. 
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