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Abstract—Metagenomics studies microbial communities by
analyzing their genomic content directly sequenced from the
environment. To this aim metagenomic datasets, consisting of
many short DNA or RNA fragments, are computationally ana-
lyzed using statistical and machine learning methods with the
general purpose of binning or taxonomic annotation. Many of
these methods act on features derived from the data through
a genomic signature, where a typical genomic signature of a
fragment is a vector whose entries specify the frequency with
which oligonucleotides appear in that fragment. In this article we
analyze experimentally the ability of existing genomic signatures
to facilitate the discrimination between fragments belonging to
different genomes. We also propose new genomic signatures
that take into account that fragments can have been sequenced
from both strands of a genome; this is achieved by exploiting
the reverse complementarity of oligonucleotides. We conduct
extensive experiments on in silico sampled genomic fragments
in order to assess comparatively the effectiveness of existing
genomic signatures and those proposed in this article. Results
of the experiments indicate that the direct use of the reverse
complementarity of tetranucleotides in the definition of a genome
signatures allows to have performances comparable to the best
existing signatures using less features. Therefore the proposed
genomic signatures provide an alternative set of features for
analyzing metagenomic data. Online Supplementary material is
available at http://www.cs.ru.nl/∼gori/signature metagenomics/.
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I. INTRODUCTION

It has been observed that there is a relative intragenomic
composition invariance in many prokaryotes [1]. This obser-
vation led to the idea of “genomic signature” [2], [3], a set
of composition-based features to be derived from DNA se-
quences, that shows few differences between DNA fragments
of the same genome. The biological underlying explanation
of this property of genomic signatures is still unclear. It is
conjectured to be the result of more contributing factors [4],
like GC content and phylogeny [5] (although the correlation
between signature and phylogenetic distance appear to be
weak, mainly due to the absence of divergence of oligonu-
cleotide composition in some phylogenetically distant species
[6]).

In this article we focus on the use of genomic signatures
for metagenomic data analysis [3]. Metagenomics is the study
of genomic content of microbial communities [7]. Essentially,
a metagenomic dataset is a set of DNA fragments sequenced
from the genomes of an environmental sample. The complete
genomes of the community members are usually not known,
and some parts of them might not be represented in the
metagenomic data. As a consequence, an important step of
metagenomic data analysis is to detect to which (kind of)
organism each fragment belongs to. This problem is tackled,
for instance, by means of clustering methods (binning) [8], by
prediction models constructed using available genomes (super-
vised taxonomic annotation) [9], [10], and by other evidence-
based approaches that match fragments with sequences in
a database of reference [11], [12]. Many of these methods
act on genomic signatures: for instance, some binning and
taxonomic annotation methods first compute signature value of
all the fragments then apply either clustering [8], [13]–[18] or
classification algorithms [19], [20] to the resulting signatures
values.

Typically, oligonucleotide frequencies signatures are used:
among these, tetranucleotide frequencies signature is the most
used [13], [14], [17], [20]; sometimes frequencies of short
oligonucleotides (length up to 6) are used together [16], [19];
a few tools adopted oligonucleotides longer than 6 nucleotides
[8], [15], [21]. These signatures were not specifically designed
to act on metagenomic fragments, and few of them were
tested on fragments of 10kb [3]. Recently, signatures for
metagenomic applications were introduced [18], [22]. For
instance, the binning tool MetaCluster successfully tested and
implemented a signature, based on tetranucleotide frequencies
ranking [18] and showed their effectiveness for clustering
metagenomic fragments.

However, to the best of our knowledge, a thorough compara-
tive analysis of genome signatures for metagenomic fragments
has not yet been provided. In this paper we conduct such a
study, and propose new signatures suitable for metagenomic
fragments that take into account the special requirements
of metagenomic applications. More precisely, a signature
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for metagenomic data needs to be effective on sequences
generated by contemporary DNA sequencing technologies.
These sequences have a length not higher than 1,000 bp [7];
existing genomic signatures, instead, were tested on fragments
of 10 kb or more [3]. Moreover, signatures for metagenomic
data should be effective even with sequences belonging to
different strands of the genomes, because sequencing tech-
nologies might sample fragments from both strands. Finally,
a signature cannot be based on information extracted from
source genome, since composition of the sequenced com-
munity is often unknown, and new species might also be
present in the metagenome. These observations motivated the
development of new signatures that assume the same value for
a sequence and its reverse complement; these signatures are
based on tetranucleotide frequencies, and exploit the reverse
complementarity of tetranucleotides.

In order to test the effectiveness of the proposed signa-
tures on metagenomic data, simulated sequenced data are
constructed. These consist of DNA fragments of 1,000 bp, like
data studied in recent works on binning [18] and sequences
generated by the new 454 GS FLX+ System1. As mentioned
before, this sequence length is much lower than the one used
in standard signature studies [3]. We assess the capability of
the considered signatures to render fragments stemming from
the same genome closer (with respect to a given similarity
measure) to each other than to fragments belonging to other
genomes; we also evaluate how well the signature distance of
two fragments represent the taxonomic relationship between
the source genomes. To this end, we employ various quality
measures, such as statistical univariate tests (e.g., Mann-
Whitney U test) and evaluation measures employed in machine
learning (e.g., ROC curve and AUC).

Results of the experiments indicate that incorporating the
above mentioned ad-hoc properties of metagenomic fragments
into a definition of signature allows to use less features than
the standard tetranucleotide frequency signature, obtaining
comparable performances. New signatures provide a valid
alternative to signatures used so far in metagenomic data
analysis.

II. MATERIAL AND METHODS

A. Genomic Signatures

In this study we focus on signatures based on tetranucleotide
(4-mer) frequencies, since previous works had demonstrated
that these features carry a significative genetic signature signal
[23].

Let W denote the set of all the 256 tetranucleotides,
represented as words of length 4 in the alphabet {A,C,G,T};
given a tetranucleotide w ∈ W , we denote by wC the reverse
complement of w. Note that 16 of these 256 words are
such that wC = w, that is, they coincide with their reverse
complement.

1See http://454.com/products/gs-flx-system/index.asp.

Given a metagenomic fragment s, we denote with fi and
fC

i the frequency with which tetranucleotide wi and wC
i occur

in s, respectively.
We view a signature as a function ρα mapping a fragment

s to a vector (a1, . . . , an) of real numbers, and consider the
following signatures.
Frequencies Signature ρT : This signature is defined by setting
the i-th component ai of ρT (s) to fi, for i = 1, . . . , 256.
This signature was used in many tools for metagenomic se-
quences processing [13], [14], [17], [20]; among the analyzed
signatures, it is the only one that does not exploit reverse
complementarity of tetranucleotides.
Symmetrized Signature ρS : This signature is obtained by sum-
ming the frequencies of distinct reverse complementary 4-mers
(see, e.g., [6]). It is defined as ρS(s) := (a1, . . . , a136), with
ai = fi + fC

i if wi �= wC
i , and ai = fi, otherwise. Notice that

the vector representation is of length 136, since 16 4-mers
coincide with their reverse complement and 240 do not (i.e.,
wi �= wC

i ).
Symmetrized Rank Signature ρRank: This signature is defined
such that ρRank(s) is the ranking induced by sorting the
elements of ρS(s). For instance, if ρS(s) = (0.7, 0, 0.3) then
ρRank(s) = (1, 3, 2). This signature was used in recent works
on metagenomics binning 2 [18].
Minimal and Maximal complementarity signatures ρmin and
ρmax: These signatures are defined such that ρmin(s) :=
(a1, . . . , a120), with ai = min(fi, f

C
i ) and wi �= wC

i , and
ρmax(s) := (a1, . . . , a120), with ai = max(fi, f

C
i ) and

wi �= wC
i . Notice that in this signature we employ only the

4-mers that have a non-identical reverse complement.
Reverse Identity Signature ρI : This signature considers only
the frequencies of the 16 4-mers that are equal to their reverse
complement (i.e., wi = wC

i ). That is ρI(s) := (a1, . . . , a16)
with ai = fi.
Ratio Signatures ρRatio1 and ρRatio2: These signature are de-
fined for the 4-mers that have different reverse complement as
ρRatio1(s) = (a1, . . . , a120) and ρRatio2(s) = (b1, . . . , b120),
where

ai :=

{
1, iffi = fC

i = 0,

min( fi

fC
i

,
fC

i

fi
), otherwise,

,

bi :=

{
1
2 , iffi = fC

i = 0,
min(fi,f

C
i )

fi+fC
i

, otherwise,

for wi �= wC
i .

JS Signature ρJS : This signature is based on Jensen-Shannon
divergence [24], and is defined such that ρJS(s) =
(a1, . . . , a120) with

ai := fi log
fi

1
2 (fi + fC

i )
+ fC

i log
fC

i
1
2 (fi + fC

i )
.

2In that work, they compare the values assumed by signature ρS for
different fragments through Spearman footrule distance, that is equivalent to
compare the values assumed by ρRank via L1.
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This signature is defined only for the 4-mers that have different
reverse complements (i. e. wi �= wC

i ).
Similarity between signatures was computed using L1 dis-

tance (also known as Manhattan distance). The choice of
this distance is motivated by its use in previous methods
for taxonomic annotation of metagenomic sequences [17].
Moreover, the distances most often used in literature are based
on L1 multiplied by an averaging factor [6], [3] , [2]. Given a
genomic signature ρa, the related signature distance between
two nucleotide sequences s, z is defined by computing the L1

distance between ρa(s) and ρa(z).
We also analyzed combinations of couples and

triplets of signatures, like (ρmin(s), ρI(s)) and
(ρmax(s), ρmin(s), ρI(s)). Similarly, we studied combinations
of normalized signatures, like (ρmin

N (s), ρI
N (s)) and

(ρmax
N (s), ρmin

N (s), ρI
N (s)), where ρa

N (s) is defined as
ρa(s) divided by the maximum value that can be achieved by
the related signature distance between two DNA fragments
of 1,000bp. The list of maximum values of the signatures is
provided in online Supplementary Material (Table 2). We also
analyzed a few linear combinations of normalized signatures:
(αρa

N (s), βρb
N (s)) and (αρa

N (s), βρb
N (s), γρc

N (s)). As for
the individual signatures, distances between combination of
signatures were evaluated with L1 norm.

B. Data acquisition and preprocessing

Complete genomes of 1,284 prokaryotes were downloaded
from the NCBI ftp server3. The complete list of the genomes is
provided in online Supplementary Material (Table S1). From
each genome, a set of sequences was randomly sampled.
Each of these sets consists of 10,000 possibly overlapping
sequences, each of them having length equal to 1,000bp. The
NCBI taxonomy4 [25] was used as reference taxonomy of the
analyzed prokaryotes.

C. Comparing signature values

Following the methodology employed in related works [18],
we evaluated the quality of a signature based on its property
to assume similar values for fragments of the same genome,
and different values for fragments of different ones. Therefore,
as a first step, we generated sets of fragments and evaluated
the dissimilarity of the signature values on pairs of these frag-
ments. Specifically, we created 9 sets of fragment pairs, where
each set corresponds to a different degree of diversity of the
source genomes. Subsequently, signature distances between
fragments for each pair of the sets were computed. From the
resulting distance values, 9 distributions of mean distances
were obtained for each signature. A first distribution was
generated using the distances between fragments of a same
genome (intra-genomic signature distances): for each genome,
we computed all the pairwise signature distances between the
10,000 fragments of that genome, and the mean of the resulting
set of distances was considered. The collection of these means

3ftp://ftp.ncbi.nih.gov/genomes/Bacteria/, downloaded on March 2011.
4Available at ftp://ftp.ncbi.nih.gov/pub/taxonomy/

across the considered genomes provided a distribution of intra-
genomic (mean) distances for a given signature.

The other 8 distributions of distances were generated
by computing distances between fragments from different
genomes (inter-genomic signature distances), where each of
the 8 distributions was obtained by considering a different
level of taxonomic divergence of the compared genomes.
Specifically, we created 7 sets of organisms’ pairs, for each
of the following taxonomic ranks: Species, Genus, Family,
Order, Class, Phylum, Superkingdom. The set of organisms
associated to rank r consisted of 1,000 different pairs of
organisms randomly selected among those whose lowest com-
mon ancestor in the taxonomy tree is at rank r. For each
pair of these organisms, we randomly selected 10,000 pairs
of genomic fragments from the set of all fragments sampled
from these genomes, and calculated the mean of the resulting
distances. The collection of the mean distances over all these
pairs of organisms provided a distribution of inter-genomic
distances at rank r.

Furthermore, we also created a set of organisms’ pairs where
each element is made by a bacterium and an archaeon, that
are the two superkingdom of the Prokaryotes. We computed a
signature distance distribution for this set of organisms’ pairs
as described above. We refer to this distribution as the inter-
genomic signature distances distribution at prokaryotes level.

D. Evaluating the effectiveness of signatures

We assessed the capability of a genomic signature to fa-
cilitate the discrimination between fragments sampled from
the same genome and fragments sampled from different ones.
More specifically, for each genomic signature, we tested if the
related signature distance yielded small values for fragment
pairs of the same genome, and greater values for fragments
of different ones. To this aim, the signature distance was
considered as a score for the fragment pair; the score quantifies
the degree to which the two fragments of the pair belong to
different genomes. Higher scores correspond to fragments that
are more likely to belong to different genomes, according to
the related signature.

Signature performances were tested and compared plotting
the associated Receiver Operating Characteristic (ROC) curves
[26]. A first class of fragment pairs, called “negatives”, was
made by the pairs sampled from the same genome; the
remaining pairs, called “positives”, formed a second class.
Signature distance was considered to be effective if it yields
small values for the negative pairs and high values for the
positive pairs. In our data, the negatives were represented
by the intra-genomic (mean) distance distribution; the union
of all the 8 inter-genomic (mean) distance distributions rep-
resented the positives. Given a threshold signature distance,
we considered as “true negatives” the negative pairs whose
distance was below or equal to the threshold; similarly, “true
positives” were made by the positives with distance above the
threshold. Therefore, for each threshold we could compute the
specificity and sensitivity and assign a point in the ROC space.
Varying the threshold among the values of our distributions,
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TABLE I
COMPARISON OF GENOMIC SIGNATURES AND THEIR COMBINATIONS,

WITH RESPECT TO AUC, POSITIVE PAIRWISE MANN-WHITNEY U TEST,
MEAN PAIRWISE AUC, NUMBER OF FEATURES

Signature1 AUC U tests Pairwise AUC Feat.
(ρS

N , ρmin
N , ρRatio1

N ) 0.919 35 0.810 376
(ρmax

N , ρmin
N , ρRatio1

N ) 0.913 35 0.808 256
(ρS

N , ρI
N ) 0.913 35 0.807 152

(ρmax, ρI) 0.909 35 0.807 136
(ρRank

N , 2ρRatio1
N ) 0.886 34 0.789 256

ρS 0.912 35 0.807 136
ρmax 0.900 35 0.802 120
ρT 0.884 34 0.789 256
ρmin 0.881 34 0.783 120
ρI 0.851 33 0.770 16
ρRank 0.794 33 0.723 136
ρRatio1 0.707 31 0.683 120
ρRatio2 0.686 31 0.668 120
ρJS 0.573 26 0.562 120
1 ρa

N denotes the normalized ρa signature (Section II-A).

we produced the ROC curve for the associated signature. We
used the ROC curve because it clearly shows if a signature ρα

is always better than signature ρβ , namely if the curve of ρα is
always above the one of ρβ . Another index of discriminative
power is the Area Under the ROC Curve (AUC) [26].

In order to evaluate whether the distribution related to the
most taxonomically divergent genome pairs is significantly
shifted toward higher values, we used the Mann-Whitney U
test [27]. Specifically, we employed this test for evaluating
whether inter-genomic distance distribution at rank r2 was
shifted toward higher values than the distribution at rank
r1, where r2 is higher than r1. The Mann-Whitney U test
was applied to compare each of the 36 pairs of distance
distributions (that is all possible pairs for the 8 inter-genomic
and the intra-genomic class, i.e.,

(
9
2

)
), for each signature. A

significance level of 5% was chosen. We also checked if the
genomic signatures were able to facilitate the discrimination
between two pairs of fragments having different taxonomic
dissimilarity (i.e., the distance measure should correlate with
the taxonomic divergence of the genomes). This was done by
computing a ROC curve as previously described, for each of
the 36 pairs of distance distributions.

III. RESULTS

A. Intra-inter genomic discrimination

In this section we evaluate the ability of a signature to
facilitate the discrimination between fragments belonging to
different genomes. The best results were achieved by signa-
tures ρS , ρmax, ρT , ρmin and ρI (Fig.1). Indeed, the ROC
curve of ρmin, ρS , ρmax and ρT were always above the
remaining curves; their AUCs were all greater or equal than
0.88 (Table I). Signatures ρmax, had AUC comparable to the
symmetrized signature ρS , although it had 120 features instead
of 136 (Table I). Similarly, ρmin AUC was almost identical to
the one of ρT , but these signatures had 120 and 256 features,
respectively. Despite ρI had only 16 features, its ROC curve
was higher than the remaining four curves except for low
values of specificity; its AUC was 0.85.

Fig. 1. Receiver Operating Characteristic (ROC) curves for different genomic
signatures. Sensitivity is the number of true positives divided by the number
of positives; specificity is the number of true negatives divided by the number
of negatives.

B. Relation between signature distances and taxonomic diver-
sity

In this section we evaluate whether the signature distances
correlate with the taxonomic divergence of the genomes (i.e.,
higher distances are assigned to genomes that have higher
taxonomic divergence). To this aim, we employed the Mann-
Whitney U test for evaluating whether the difference between
signature distance distributions sampled at differrent level
of taxonomic divergence were statistically significant at 5%
confidence level (see Section II-D). Results demonstrate that
the signature distances tended to have a positive correlation
with taxonomic diversity. This correlation is also shown by the
estimated probability density functions (Fig.2, Supplementary
Figures 1-9). The third column of Table I shows the number of
distance distribution pairs for which the Mann-Whitney U test
was significant. For six signatures, the test was significant for
at least 33 of the 36 distribution pairs (Table I). According to
Mann-Whitney U test, no signature was able to distinguish the
distance distributions at levels Superkingdom and Prokaryotes.

Nevertheless, all the signatures had difficulties in distin-
guishing between different levels of taxonomic diversity. This
distinguishing capacity was evaluated through the mean of
AUCs computed for each ROC curve of the 36 pairs of dis-
tance distributions (Table I, fourth column). For each signature,
this mean AUC did not exceed 0.81. The best results were
obtained for signatures whose features were tetranucleotide
frequencies; their means AUC were above 0.77.
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(a) Maximal Complementarity Signature ρmax

(b) Symmetrized Signature ρS

Fig. 2. Probability density function of genomic signature distances, for
different levels of taxonomic diversity. The functions were generated through
the gaussian kernel density estimator included in SciPy library [28].

C. Combinations of signatures

The studied combinations of signatures could not achieve
results significantly better than the individual signatures (Table
I, Supplementary Tables 3-5). For example, the AUC of the
best combination exceeded the AUC of the studied signatures,
but not significantly (Table I). Similar remarks can be done
for the other evaluation tests.

However, a few combinations of signatures had better per-
formances than the genomic signatures that compose them. For
instance, the combination of normalized ρRank and normalized
ρRatio1 had results significantly better than the two signatures
taken separately; its results are comparable to best analyzed

signatures (Table I).

IV. CONCLUSION

In this work, we compared the performances of new and
already used genomic signatures for metagenomic data analy-
sis. The signatures were tested with respect to their capacity to
facilitate the discrimination between DNA fragments sampled
from different prokaryotes genomes. The relation between
signature distance and taxonomic diversity was also analyzed.
Signature distances were evaluated for fragments of 1,000 bp
randomly sampled from 1,284 genomes.

According to our experiments, the reverse complementarity
can be successfully exploited for our scopes, as shown by the
results for symmetrized signature and the newly introduced
minimal and maximal reverse complementarity signatures.
These two signatures, in particular, provide a valid alternative
to symmetrized signature and frequencies signature, because
they achieved comparable performances using less features.
The appreciable results for reverse identity signature, that is
made by just 16 tetranucleotide frequencies, shows that not all
the tetranucleotides are necessary in defining a good signature
for metagenomics; indeed, reduction of features space is
exploited by some existing binning methods [16]. Results on
combinations of signatures indicated that different signatures
can carry complementary informations, like symmetrized rank
signature and ratio signature, and can marginally improve the
quality of results.

All the signature distances seemed to be related to tax-
onomic diversity; nevertheless this relation was not strong
enough to estimate the taxonomic diversity from signature
distance. This observation is consistent with previous studies
on genomic signatures and phylogenetic distance [6], [29].

In future work we plan to compare the signatures per-
formances on shorter sequences, resembling data produced
by other contemporary sequencing technologies like Illumina
and other 454 machines5. Results of preliminary experiments
on sequences of 150 and 500 bp indicate that good perfor-
mances are achieved by symmetrized and maximal reverse
complementary signatures. We also aim to study signatures
performances for taxonomic discrimination at different ranks
and to compare signatures variations taxon-by-taxon.
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