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Abstract—A general shape equation for the local regular
structure of biomolecular chains at the equilibrium state is estab-
lished. It predicts a general relationship between the structural
curvature and torsion, which only concerns about the elastic
property of the molecular chain, and is independent of variable
conformations of real biomolecules. Solutions corresponding to
α-helix and β-hairpin in proteins, helical DNA, as well as spiral
molecules are discussed, which show a fairly well agreement with
experimental data.

I. INTRODUCTION

It is generally believed that the native three-dimensional
structure of biomolecules serves as a prerequisite for their
biological functions[1]. Such as during the processes of repli-
cation and transcription of DNA, the translation of messenger
RNA, and the binding and dissociation of proteins etc, the
shapes and topological properties of molecular chains (such as
proteins and DNA) all play a significant role[2]. Thus to de-
termine the native structure of biomolecules becomes a central
aim of modern structural biology. It will significantly enhance
our understandings on the biological processes involved in
life, and also has broad applications in medicine, food and
materials etc.

During the past decades, plenty models have been suggested
to describe the molecular chains. For example, the wormlike
chain model[3] was established for DNA structure under small
external forces; while the wormlike rod chain model[4] is more
appropriate for a moderate force. And the equilibrium shape
equations of vesicle membranes were derived by Ou-Yang
and Helfrich[5], [6], by which some characters of membranes
have been carefully examined. However, to the best of our
knowledge, the general equilibrium shape equations of chain
biomolecules have not been established yet, by which the
native three-dimensional molecular structure can be deter-
mined precisely, and its dynamic behaviors can be understood
well[7].

In this paper, we propose a general equation for the local
regular structure of chain-like biological molecules at the
equilibrium state. The equation is established based on the
study of elastic energy density of chain molecules, which
is expressed as a function of the curvature and torsion, and
is independent to varied conformations of real biomolecules.
From this shape equation, different solutions which correspond

to various natural structures of biomolecules, like α-helix
and β-hairpin in proteins, helical DNA and spiral molecules,
could be found. When applied to real helical conformations of
protein and DNA, two sets of parameters, (3.26, −10.70) for
protein and (29.07, −135.69) for DNA, are obtained, which
can effectively characterize the different elastic properties of
protein and DNA. Same set of parameters has also been
used to study the conformation of β-hairpin, which predicts a
maximum loop length ≤ 10 monomers.

The following paper is organized as: In Section II, a general
shape equation for the local regular structure of chain-like
molecules at the equilibrium state is derived. In Section III,
several representative solutions are discussed, which corre-
spond to straight molecules, helical conformations of protein
and DNA, β-hairpin and spiral molecules etc. Section IV is a
brief conclusion.

II. DERIVATION OF SHAPE EQUATION

Many important biological molecules, such as DNA, RNA
and proteins, are linear (consecutive and unbranched), with
the chain length much larger than the width[2]. Thus we can
approximate them by one-dimensional smooth curves[8], and
denote the centerline as r = r(s), where s is the arc length.
Then in general the elastic energy of a chain biomolecule can
be written as:

Fe =

∫ l

0

g(r(s))ds, (1)

where g(r(s)) is the elastic energy density, sensitively depend-
ing on the local geometric shape and elastic properties of the
molecular chain; l is the chain length.

According to classical elastic theory[9], [10], the elastic en-
ergy density can be further represented as a scalar function of
the tangent vector t = dr/s and its derivatives dnt/dsn(n =
1, 2, · · ·). Moreover, due to the rotational symmetry around
t, only those scalars that are invariant under simultaneous
reversal of s and t can occur[9], [10]. Thus there is no first-
order invariant. The only independent second-order invariant
is dt

ds · dt
ds . Among the third-order invariants, we choose two

independent ones: t · ( dt
ds · d2t

ds2 ) and d
ds ( dt

ds · dt
ds ).

Consequently the elastic energy density (up to third-order)
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can be expressed as

g = λ + c0
dt

ds
· dt

ds
+ c1t · (

dt

ds
· d2t

ds2
) + c2

d

ds
(
dt

ds
· dt

ds
), (2)

where λ is the spontaneous curvature; ci are elastic co-
efficients. Using the formulas for curvature κ = |dt/ds|
and torsion τ = t · (dt/ds × d2t/ds2)/κ2 in differential
geometry[11], we can eventually write Eq. 2 as

g = λ + (c0 + c1τ)κ2 + c2(κ
2)′ (3)

The above formula coincides with the one suggested by
Helfrich to third-order, except for the last term that he
neglected[12]. According to Ou-Yang[13], it is “sufficient for
a description of the centerline of uniform elastic Kirchhoff
rods in equilibrium”.

To determine the natural biomolecular structure, a popular
traditional method is to minimize the elastic energy Fe with
respect to the position vector r(s) by variational approach[5],
[6], [14], as it is a common belief that the natural conformation
of a biomolecule corresponds to the state with minimum free
energy. However in many cases, this method turns out to be not
so effective. One reason is the neglect of chemical interactions
between nonlocal contact monomers, which is essential for the
maintenance of biomolecular structure; and sole optimization
of the elastic energy will not necessarily lead to a naturally
optimized structure in principle (see Appendix A).

Another more fundamental reason is the neglect of stochas-
tic force. In general, for local structures of biomolecules, due
to the small system size and relatively weak chemical interac-
tions between monomers (∼ 1−10kJ/mol), the environmental
stochastic forces (∼ 1kJ/mol) can not be directly neglected
in principle[15]. Furthermore the assumption of minimal free
energy may not be applicable too.

In current paper, we will look for an alternative way.
Generally speaking, structure bending and twisting are direct
consequences of the chemical interactions between different
monomers (Fc), such as hydrogen bonding, van der Waals
interaction, hydrophobic effect etc[15], [16]. Although there
is no strict relation between the elastic energy and chemical
interaction energy, a general observation in our previous MD
and MC simulations of protein folding[17] is that the stronger
the monomer interaction is, the larger the molecular chain can
be distorted. Therefore there is a positive correlation between
the elastic energy and monomer interaction energy (neglect
the negative sign) for a given molecular chain.

Due to its nonlocal nature, Fc can hardly be expressed
through local position vector r(s). But since we are dealing
with local regular structure of biomolecules, we can assume
that it distributes uniformly within the structure. Furthermore
if we suppose the elastic energy density is linearly proportional
to the energy density of chemical interactions, a most simple
form in applications, we get

g ∝ Fc/l. (4)

The validity of above formula can be checked through the
comparison of its predictions with the experimental data,

though a direct confirmation still requires plenty of future
works. Substituting the formula for elastic energy density (Eq.
3), we reach a general shape equation that describes the local
regular structure of chain biomolecules at the equilibrium state,
i.e.

(c0 + c1τ)κ2 + c2(κ
2)′ = γ

Fc

l
− λ. (5)

Here it should be noted that above equation can be misleading
in the prediction of global conformations of biomolecules,
since our present derivation is only valid for local regular
structures.

III. RESULTS AND DISCUSSION

To examine the validity of Eq. 5, we discuss some possible
solutions that may correspond to various natural conformations
of biomolecules.

A. Straight line

Firstly when Fc = λ = 0, κ′ = 0 and τ = 0, we can easily
obtain the vanishing curvature solution

κ = 0, (6)

which gives rise to a conformation of straight biopolymer in
the absence of external constraint.

B. Helical conformation

Helix is one of the most observed biological conformations
in nature. As we know, DNA can adopt a variety of structures:
A, B and Z, but crucially they are all helical. And the DNA
double helix is stabilized primarily by two forces: hydro-
gen bonds between nucleotides and base-stacking interactions
among the aromatic nucleobases[18]. While for proteins, right-
handed α-helix, which is maintained by consecutive hydrogen
bonds between i and i + 4 residues, constitutes a common
motif in the secondary structure[19].

Thus if we assume κ′ = 0, λ = 0, Eq. 5 possess a solution
in which the curvature and torsion satisfies

1

κ2
=

c0

γh0
+

c1

γh0
τ, (7)

where h0 = Fc/l = nϵh/l is the average interaction energy
density (ϵh is the interaction energy for single monomer, n
is the number of monomers within chain length l). So for
helical structures, 1/κ2 and τ are expected to be linearly
related through two dimensionless parameters c0/(γh0) and
c1/(γh0), which should only depend on the elastic and chem-
ical properties of a molecular chain, instead of real helical
conformations.

To test above relationship, we studied the experimental data
of several kinds of helical conformations in proteins and DNA.
As listed in Table I, the helical conformation is described
through

r(s) = (r0 cos ωs, r0 sinωs,
md

2π
ωs),

where r0 is the radius of a helix; m is the number of monomers
per turn; d is the raise per monomer, positive for right-handed
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helix, and negative for left-handed helix. Let p = md/2π,
ω = 1/

√
(r2

0 + p2), then these parameters associate with κ
and τ through

κ =
r0

r2
0 + p2

, τ =
p

r2
0 + p2

. (8)

From Fig. 1(A) and 1(B), we can see that 1/κ2 and τ obey a
strict linear relationship for various experimentally identified
helical conformations of protein and DNA, as predicted by
Eq. 7. And during the data fitting process, we can further de-
termine the model parameter pair as (c0/(γh0), c1/(γh0)) =
(3.26,−10.70) for protein, and (29.07, −135.69) for DNA.
In both cases, the coefficients for twisting are negative. This
means the left-handed helix will have higher elastic energy
density than the right-handed one, which explains why right-
handed helix is more often observed in nature[2]. Moreover,
the elastic coefficient for DNA is about one order larger than
that for protein. This hints that DNA is more rigid than
protein[2], whose physical foundation lies on that DNA is
made up of double-helical chains, while protein is single-
stranded.

Fig. 1. Linear relations between 1/κ2 and τ for helical conformations of
(A) protein and (B) DNA.

Therefore the model parameter pair (c0, c1) turns out to
be an effective index to characterize the elastic properties of
various biomolecules. Compared to the relationship predicted
by traditional variational method[14], which fails to identity
these characteristic parameters (see Appendix A), our predic-
tion appears to be more reasonable.

C. β-hairpin

β-hairpin, one of the simplest supersecondary structures,
are widespread in globular proteins, and have often been
suggested as possible sites for nucleation[21]. It can be mod-
eled by a combination of a planar circular loop region and
two straight β-strands which are connected by consecutive
hydrogen bonds. The solution for a straight line have been
introduced in previous section; while for the loop region, we
have τ = 0, κ′ = 0, λ = 0 and Fc = ϵh (the first pair of
hydrogen bond makes the major contribution to maintain the
loop region). Then Eq. 5 possess a special circle solution

κ =

√
γh0

(m + 2)c0
, (9)

where m is the number of monomers in loop region; h0 =
ϵh/l0 is the energy density for hydrogen bonds; l0 = 3.88Å
is the mean distance between neighbor residues.

Fig. 2. Model for β-hairpin.

Substituting the value c0/(γh0) = 3.26 obtained from
fitting the helical conformation of proteins, we found that the
length of loop region in β-hairpin can not exceed 10 monomers
(a list of curvatures for all possible loops is given in Table II),
otherwise it would be unable to form a circle (a part of circle to
be exact). This result qualitatively agrees with the observation
that most β-turns with loop length ≤ 7[22].

TABLE II
ALL POSSIBLE LOOPS FOR β-HAIRPIN.

Loop length (m) Curvature of loop (κ)
1 0.320
2 0.277
3 0.248
4 0.226
5 0.209
6 0.196
7 0.185
8 0.175
9 0.167
10 0.160

Above discussions are also applicable to cDNA[23] and
other circular molecules, although the interactions which in-
duce bending may be different from hydrogen bonding as in
β-hairpin.

D. Spiral structure

If we suppose τ as a const, a general solution of Eq. 5 is
obtained as

κ(s) =
√

κ0

(
1 − αe−s(c0+c1τ)/c2

)
(10)

where α is a constant; s is the arc length; and κ0 =
(γh0 − λ)/(c0 + c1τ) is the initial curvature at s = 0.
In general, Eq. 10 describes a spiral structure which have
been widely observed in virus, DNA package and many other
molecules[24].
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TABLE I
PARAMETERS FOR HELICAL CONFORMATIONS IN PROTEINS AND DNA[20].

Helix Monomers
per turn (m)

Rise per
monomer (d) Radius (r0) Energy density

(h0)(a) Curvature (κ) Torsion (τ )

α-helix 3.6 +1.5 2.3 0.23 0.38 0.14
310-helix 3.0 +2.0 1.9 0.22 0.42 0.21
π-helix 4.3 +1.1 2.8 0.24 0.33 0.089

collagen-helix 3.3 −2.9(c) 1.6 0.71(b) 0.33 −0.31(c)

A-DNA 11 +2.3 13 0.13 0.070 0.022
B-DNA 10 +3.4 10 0.14 0.077 0.042

Z-DNA 12 −3.8(c) 9 0.17 0.067 −0.054(c)

(a) The average interaction energy density is estimated as h0 =
mϵh

2π
√

r2
0
+(md/2π)2

.

(b) Since collagen-helix is formed by three proteins, its energy density is three times of normal value.
(c) Left-handed.

Particularly, if c0 + c1τ = 0, κ(s) =
√

α + s(γh0 − λ)/c2;
if c2 = 0 or α = 0, we reobtain Eq. 7 for the helical
conformation.

Fig. 3. Typical planar spiral solutions according to Eq. 9. (a) Outer spiral with
c0/(γh0) = 1, c0/c2 = 1/3, α = −10. (b) Inner spiral with c0/(γh0) =
1, c0/c2 = 1/5, α = 0.8.

IV. CONCLUSION

In this paper, we have derived a general shape equation
(Eq. 5) for the local regular structure of chain biomolecules
at the equilibrium, based on the study of elastic energy den-
sity and chemical interactions for chain molecules. Different
solutions which correspond to various natural structures of
biomolecules, like α-helix and β-hairpin in proteins, helical
DNA and spiral molecules, were discussed. When applied
to real helical conformations of protein and DNA, we found
that parameters (c0, c1) have provided fairly good description
for the elastic properties of protein and DNA, by which
various types of helical conformation were linked through
a general relation between curvature and torsion (Eq. 7).
Meanwhile traditional variational approach that was based on
the assumption of minimum elastic energy failed to obtain
such a relationship (see Appendix A).

Therefore a major application of our current study is to
facilitate the structure prediction of biomolecules, which is a
very hot topic in modern molecule biology, and have not been
well solved yet. By providing a first-step rough geometrical
description of the native structures of biomolecules with our
current model, following computer-aided refinements could
be relatively easily made to achieve high-resolution atomic-
level structural details. Another potential application is that
our model provides a new way to characterize the elastic

property of different molecular chains by studying their native
geometrical conformations (just as what we have done in Fig.
1). This would be interesting in AFM studies.

APPENDIX A
COMPARISON WITH VARIATIONAL APPROACH

A general variational equation for the elastic energy density,
which is formulated as a function of curvature κ and torsion
τ , is given by Zhang[14], i.e.

d2

ds2
(
2f ′

2τ

κ
+ f ′

1) +
d

ds
(
2f ′

2κ
′τ

κ2
+

3f ′
2τ

′

κ
) + f ′

1(κ
2 − τ2)

−f ′
2(2κτ − κ′τ ′

κ2
+

τ ′′

κ
) − fκ + f ′

3(3κκ′ − 2ττ ′)

− d

ds
[f ′

3(κ
2 − τ2)] − d3

ds3
f ′
3 = 0, (11)

d3

ds3
(
f ′
2

κ
) +

d2

ds2
(
f ′
2κ

′

κ2
) +

d

ds
[
f ′
2

κ
(κ2 − τ2) − 2τf ′

2] + f ′
1τ

′

−f ′
2κ

′ +
f ′
2τ

′τ
κ

+
d2

ds2
(2f ′

3τ) − d

ds
(3f ′

3τ
′) + f ′

3τ
′′ = 0, (12)

where f = f(κ(s), τ(s), κ′(s)) is the elastic energy density,
f ′
1 = ∂f/∂κ, f ′

2 = ∂f/∂τ, f ′
3 = ∂F/∂κ′. Substituting the

elastic energy density we derived in the methodology section
g = λ+(c0+c1τ)κ2+c2κκ′, we get following shape equations
as:

c0(κ
3 − 2κτ2 + 2k′′) + c1(6κ′′τ + 6κτ ′′ + 14κ′τ ′,

−2κτ3 − κ3τ) − λκ = 0 (13)
2c0κτ ′ + 2c2(κ

′′τ + κ′τ ′) + c1(2κ′′′ + 2κ2κ′

−4κκ′τ − κ′τ2 − 2κ2τ ′ + κττ ′) = 0. (14)

For simple solutions for straight line and circle, Eqs. 13-14
give same results as those obtained from Eq. 5. For helical
conformations, we can find κ and τ must satisfy following
relationship:

c0(κ
2 − 2τ2) − c1(κ

2τ + 2τ3) − λ = 0. (15)

As parameters c0, c1 and spontaneous curvature λ are only
associated with the elastic property of a given molecule,
and should be independent of real conformations of helical
conformations, we expect there is a linear relationship between
κ2 − 2τ2 and κ2τ + 2τ3.
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Fig. 4. Relations of κ2 − 2τ2 and κ2τ + 2τ3 for different helical
conformations of (A) protein and (B) DNA.

However we can not convict such a linear relationships
when substituting parameters given in Table II (see Fig. 4),
which hints sole optimization of the elastic energy may not be
proper for the determination of natural helical conformations.
As we can clearly see that the strong chemical interaction
between neighboring contacted monomers, which are com-
pletely neglected in Zhang’s variational approach, are the
major forces that maintain the stability of whole helical chain.
Thus, we argue that our current approach, at least in this
example, is more realistic than the minimal elastic energy
assumption in the description of local regular structures of
chain biomolecules.
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