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Abstract—The roles of time delay on gene switch and stochastic
resonance are systematically explored based on a famous gene
transcriptional regulatory model with noises. Our theoretical
results show that the time delay can induce the switch, i.e., the
TF-A monomer concentration shifts from the high concentration
state to the low concentration state (“on”→“off”), and can
further accelerate the transition from “on” to“off”. Moreover,
it is found that the stochastic resonance can be enhanced by
the time delay and the correlated noise intensity. However, the
additive noise original from the synthesis rate restrains the
stochastic resonance. It is very interesting that the resonance
bi-peaks structure appears for the large value of the additive
noise intensity. The theoretical results by using small-delay time-
approximation approach are consistent well with our numerical
simulation.

I. INTRODUCTION

In recent years, a plenty of researches show that noises
play a positive role in many fields. Many novel phenomena
are found, such as, noise induced transition[1], [2], [3],
reentrance phenomena[4], [5], stochastic resonance[6], [7],
noise enhance stability[8], [9], current reveal[10], [11], [12],
and so on. On the other hand, in many cases, the delay
reflects transmission times related to the transport of matter,
energy, and information through the system. Understanding
the behavior of time-delayed dynamical systems is a first
step in improving the knowledge of memory in general,
whose analysis is especially important in medicine, biology
and control theory. Recently, the combined effects of noises
and time delays have been the subject of increased interest.
In the field of pure statistical physics, the bistable systems
with noise and time delay simultaneous have been mainly
investigated in detail[13], [14], [15]. Brownian motor with
time-delayed feedback is studied by Wu[16]. The effect of
time delay on feedback control of a flashing ratchet has been
also investigated [17]. The integration of stochastic noise and
time delay completely suppresses the population explosion
in a mutualism[18]. Effects of time delays and noises in
competitive systems have been investigated[19]. These results
implicated that the combination of noise and time delay could
provide an efficient tool for understanding real systems.

Regulation of gene expression by signals outside and in-
side the cell plays important roles in many biological pro-
cesses. As the basic principles of genetic regulation have
been characterized, it has become increasingly evident that
nonlinear interactions, positive and negative feedback within
signaling pathways, time delays, protein oligomerization, and
crosstalk between different pathways need to be considered to
fully understand genetic regulation[20], [21], [22], [23], [24],
[25], [26]. Smolen et al. have introduced a simple genetic
regulatory model that incorporate known features of genetic
regulatory using an explicitly mathematical dynamic systems
approach[20], [21]. The simplest model manifested multiple
stable steady states, and brief perturbations could switch the
model between these states. Moreover, the effects of macro-
molecular transport and stochastic fluctuations on dynamics
of genetic regulatory systems are investigated. Liu [23]et al.
have studied the effects of the correlation between the noise
of the decomposed rate kd and the noise of the synthesis
rate Rbas. They found that a successive switch process (i.e.,
“on”→“off”→“on”, which we call the reentrance transition
or twice switch) occurs with increasing the noise intensities,
and a critical noise intensity exists at which the mean first
passage time of the switch process is the largest. The effect
of the color cross-correlated on the switch is investigated[24].
Wang[25] et al. also have investigated the effects of delay
time, which is the time required for movement of TF-A
protein to the nucleus. Their results showed that the delay
time restrains the transition from the low concentration state
to the high concentration state. However, these studies only
consider single noise source, in particular, the delay-induced
switch-like behaviors has not been explored yet. In addition,
in this case, the delay time appears in both deterministic and
fluctuating forces simultaneously, hence it is very difficult to
study from a view of theoretical analysis.

Stochastic resonance (SR), which was originally discovered
by Benzi and Nicolis[27], [28] in the context of modeling the
switch of the Earth’s climate between ice ages and periods
of relative warmth, is an important aspect in many scientific
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fields, which has been investigated extensively due to its po-
tential applications from both the theoretical and experimental
points of view. SR is a common case and generic enough
to be observable in a large variety of nonlinear dynamical
systems, including the occurrence of SR in physical systems,
biological system, ecological system, laser system, etc. In the
biophysics field, the study of SR phenomenon has turned into a
forward subject. The SR phenomenon and its applications were
extensively found, such as, noise enhancement of information
transfer in crayfish mechanoreceptors by SR [7]. SR can
be used as a measuring tool to quantify the ability of the
human brain to interpret noise contaminated visual patterns
[29] and SR appears in an anti-tumor system modulated by a
seasonal external field [30]. Oscillation and noise determine
signal transduction in shark multimodal sensory cells[31]. The
gene expression can be regulated by signals from outside
and within the cell. Thereby, in the gene transcriptional
regulatory process, the external environmental factors, such
as, the electromagnetic field on the earth, the solar terms,
seasonal variation, are the common features. This means that
the transcriptional regulatory of gene should have a periodic
form. In this case, the bistability, noise and the signal exist
simultaneously, so the combined effects of noises and delay
time on the SR should be investigated.

We would like to emphasize that the combined effects
of noise and time delay on dynamical behaviors of gene
regulatory network is rarely investigated. Our investigation is
a significant try forward understanding the basic mechanisms
of the delay induced gene switch and stochastic resonance in
realistic yet complex organisms from a view of theory, and will
motivate the further experimental research for gene network.

II. MODEL

A. Deterministic gene regulatory model

To examine the capability of genetic regulatory systems
for complex dynamic activity, Smolen et al.[20] have devel-
oped simple kinetic models that incorporate known features
of these systems. These features include autoregulation and
stimulus-dependent phosphorylation of transcription factors
(TFs), dimerization of TFs, crosstalk, and feedback. The
simplest kinetic model of genetic regulation can be described
by Fig. 1. A single TF-A is considered as part of a pathway
mediating a cellular response to a stimulus. The TF forms
a homodimer that can bind to responsive elements.(TF-REs).
The TF-A gene incorporates a TF-RE, and when homodimers
bind to this element, TF-A transcription is increased. Binding
to the TF-REs is independent of dimer phosphorylation. Only
phosphorylated dimers can activate transcription. The fraction
of dimers phosphorylated is dependent on the activity of
kinases and phosphatases whose activity can be regulated by
external signals. Thus, this model incorporates both signal-
activated transcription and positive feedback on the rate of TF
synthesis. It is assumed that the transcription rate saturates
with TF-A dimer concentration to maximal rate kf , which is
proportional to TF-A phosphorylation. At negligible dimmer

Fig. 1. Model of genetic regulation with a positive autoregulatory feedback
loop. The transcription factor activator (TF-A) activates transcription with a
maximal rate kf when phosphorylated (P) and binds as a dimer to specific
responsive-element DNA sequences (TF-REs). TF-A is decomposed with rate
kd and synthesized with rate Rbas

concentration, the synthesis rate is Rbas. TF-A is eliminated
with a rate constant kd, binding processes are considered
comparatively rapid, so the concentration of dimmer is propor-
tional to the square of TF-A monomer concentration x. These
simplifications give a model with a single ordinary differential
equation for the concentration of the TF-A:

dx(t)

dt
=

kfx2(t)

x2(t) + Kd
− kdx(t) + Rbas, (1)

where Kd is the dissociation concentration of the TF-A dimer
from TF-REs. Under the following condition of parameters:

[−(
kf + Rbas

3kd
)3 +

Kd(kf + Rbas)

6kd
− KdRbas

2kd
]2+

[
Kd

3
− (

kf + Rbas

3kd
)2]3 < 0.

(2)
The potential function corresponding to Eq.(1) is

U0(x) = kf

√
Kd arctan(

x√
Kd

)+
kd

2
x2−(Rbas +kf )x. (3)

Two stable steady states are presented as
x+ = 2

√
−p/3cos(θ) + (Rbas + kf )/(3kd) and

x− = 2
√

−p/3cos(θ + 2π/3) + (Rbas + kf )/(3kd).
One unstable steady state is xu = 2

√
−p/3cos(θ + 4π/3) +

(Rbas + kf )/(3kd), where p = Kd − [(Rbas + kf )/kd]
2/3,

q = Kd(kf − 2Rbas)/(3kd) − 2[(Rbas + kf )/(3kd)]
3 and

θ = arccos(−q/(2
√

−p3/27)/3.

An interesting aspect of the model is that, based on the
different initial conditions, the concentration of TF-A can be
one of the two stable steady states. So it is a bistable system
for the certain values of kf (5.45 < kf < 6.68) (see Fig. 2).
Bistable systems are a kind of important system in biological
systems. In this article, our works are employed in the bistable
region. When the parameter values are kf =6, Kd =10, kd =1
and Rbas =0.4, the stable steady states are x− ≈0.62685 and
x+ ≈4.28343, and the unstable steady state is xu ≈1.48971
as shown in Fig.3[23].
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Fig. 2. Bifurcation plots for the steady state of TF-A on the control parameter
of transcription rate kf . The system in the region (i.e., 5.45 < kf < 6.68)
exhibits multistability. The other parameters are fixed as dissociation constant
of TF-A dimer from TF-REs Kd =10, the degrade constant kd =1, and the
basal rate of TF-A synthesis Rbas =0.4.

Fig. 3. The bistable potential of Eq.(3). The parameter values are kf =6 ,
Kd =10, kd =1, and Rbas =0.4. The stable steady states are x− and x+,
and the unstable steady state is xu.

B. Stochastic model with correlated noise and time delay

Cells are intrinsically noisy biochemical reactors: low re-
actant numbers can lead to significant statical fluctuations in
molecule numbers and reaction rates[32]. It has been found
that the stability against fluctuations is essential for the gene
regulatory cascade controlling cell differentiation in a devel-
oping embryo [33]. Moreover, these fluctuations are intrinsic:
they are determined by structure, reaction rates, and species
concentrations of the underlying biochemical networks. So
we should not only consider deterministic model. Recently,
some experiments also showed that Rbas and kd are affected
by the biochemical reactions, mutations, and the concentra-
tions of other proteins are also fluctuant[34]. Therefore, it
is reasonable to consider the fluctuation effects on the gene
transcriptional regulatory model. We consider the fluctuations

Fig. 4. Model of genetic regulation with a positive autoregulatory feedback
loop and delay time.

both on the synthesis rate Rbas and the rate constant kd.
Namely, Rbas → Rbas + η(t) and kd → kd + ξ(t). The
two independent noise ξ(t) and η(t) may have a common
source, thereby, the correlation between them should be taken
into our model. The stochastic differential equation (Langevin
equation) corresponding to this bistable gene model is given:

dx(t)

dt
=

kfx2(t)

x2(t) + Kd
− (kd + ξ(t))x(t) + Rbas + η(t), (4)

where ξ(t) and η(t) are the Gaussian white noise with the
following statistical properties:

〈ξ(t)〉 = 〈η(t)〉 = 0, (5)

〈ξ(t)ξ(t′
)〉 = 2Dδ(t − t′), (6)

〈η(t)η(t
′
)〉 = 2αδ(t − t′), (7)

〈ξ(t)η(t′)〉 = 〈η(t)ξ(t′)〉 = 2λ
√

αDδ(t − t′). (8)

where D and α denote the multiplicative and additive noise
intensities, respectively. And λ represents the coupling strength
between the two noise terms (i.e., correlated intensity).

Smolen et al.[20], [21] have considered that the gene
transcriptional regulatory binding processes are comparatively
rapid, and would probably not be reasonable for overall cel-
lular nuclear concentration of TF-A, because the equilibration
time would be on the order of the degradation time for TF-
A protein. However, a short time scale for equilibration is
more likely for nuclear concentration of TF-A. This is because
the rate constants kf and kd include implicitly entrance and
exit of TF-A protein from the relatively small nuclear volume
and are thus larger than those governing the dynamics of
overall cellular concentration of TF-A. Therefore, the time
delay should be considered in this model. This delay appears
between any change in the level of nuclear TF-A and the
appearance in the nucleus of TF-A synthesized in response to
that change. The simplest kinetic model of genetic regulation
with time delay can be described by Fig.4.

In order to more exactly predict the dynamics of the genetic
regulation model, it is necessary to consider macromolecular
transport in these biochemical reactions. Transport can be
diffusive or active, and in some cases a time delay may suffice
to model active transport. We consider the time delay τ , which
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is the time taken for the transcription of tf -a mRNA and
its movement to translation. This delay can affect the TF-A
monomer concentration x(t). Therefore, (kd + ξ(t))x(t) can
be written as (kd +ξ(t))x(t−τ), and Eq. (4) can be rewritten:

dx(t)

dt
=

kfx2(t)

x2(t) + Kd
−kdx(t−τ)+Rbas−x(t−τ)ξ(t)+η(t),

(9)
where the τ (time delay) previous to the time when dx/dt is
computed. In addition, only small time delay is investigated
in our article so that the theoretical approximation methods
below are applicable in our model.

III. DYNAMICAL CHARACTERS

A. Steady-state probability distribution

The small delay time approximation of the probability
density approach is employed [35], [36]. Substituting xτ for
x(t − τ) in Eq.(9), we obtain

dx(t)

dt
= heff (x(t)) + geff (x(t))ξ(t) + η(t), (10)

where

heff (x) =

∫ +∞

−∞
(

kfx2

x2 + Kd
− kdxτ + Rbas)

×Pd(xτ , t − τ ; x, t)dxτ

= (1 + τ)(
kfx2

x2 + Kd
− kdx + Rbas).

(11)

geff (x) =

∫ +∞

−∞
(−xτ )Ps(xτ , t − τ ; x, t)dxτ = −(1 + τ)x.

(12)
In Eq.(11-12), Pd(xτ , t−τ ; x, t) and Ps(xτ , t−τ ; x, t) denote

the conditional distributions of x(t) in the determinate part and
stochastic part, respectively, which are given by[37]

Pd(xτ , t − τ ; x, t) =

√
1

2πG2(x, x)τ

× exp(− [xτ − (x + h(x, x)τ)]2

2G2(x, x)τ
),

(13)

Ps(xτ , t − τ ; x, t) =

√
1

2πG2(x, x)τ

× exp(− [xτ−(x+g(x,x)τ)]2

2G2(x,x)τ ),

(14)

where h(x, x) =
kf x2

x2(t)+Kd
− kdx + Rbas, g(x, x) = −x,

G2(x, x) = Dx2 − 2λ
√

Dαx + α. Thus, the stochastic
delayed differential equation can be approximately reduced to
the ordinary stochastic equation. The non-Markovian process
induced by the time delay can be transformed to Markovian
process. Meanwhile, Eq.(10) can be equivalently transformed
into a stochastic differential equation[2]

dx(t)

dt
= heff (x(t)) + Geff (x)ε(t), (15)

with
〈ε(t)ε(t′

)〉 = 2δ(t − t′), (16)

Geff (x) =

√
Dgeff (x)2 − 2λ

√
Dαgeff (x) + α

=

√
D(1 + τ)2x2 − 2λ

√
Dα(1 + τ)x + α.

(17)

In the steady-state regime (given by Eq.(2)) and under the
constraint x > 0(the TF-A monomer concentration x(t) is
all higher than zero), the approximate delay Fokker–Planck
equation corresponding to Eq.(15) is derived as

∂

∂t
P (x, t) = − ∂

∂x
A(x)P (x, t) +

∂2

∂x2
B(x)P (x, t). (18)

where

A(x) = heff (x) + Geff
dGeff (x)

dx
, (19)

B(x) = G2
eff (x). (20)

The stationary probability distribution (SPD) corresponding
to Eq. (18) is obtained

Pst(x) =
N

Geff
exp

∫ x

0

heff (x′)
B(x′)

dx′,

=
N

Geff
exp[Φ(x)],

(21)

where N is a normalization constant, and Φ(x) is the gener-
alized potential function following

Φ(x) =
1

γ0
[γ1 ln(x2 + Kd) + γ2 arctan(

x√
Kd

)

+γ3 ln(Dn2x2 − 2mnx + α)

+
γ4√

Dαn2 − m2n2
arctan(

Dn2x − mn√
Dαn2 − m2n2

)],

(22)
where

n = 1 + τ,

m = λ
√

Dα,
γ0 = 4m2Kdn

2 − 2αDn2Kd + K2
dD2n4 + α2,

γ1 = −Kdkfn2m,

γ2 = K
3/2
d kfDn3 − n

√
Kdkf ,

γ3 = n2mKdkf − kdα
2

2Dn
− 2nm2Kdkd

D

+nαkdKd − Dn3K2
dkd

2
,

γ4 = −αKdDn3kf + nα2kf + 4n3m2Rbaskd

−2Dn3RbasKdα + D2n5RbasK
2
d + nRbasα

2

+2n3m2Kdkf − mkdα
2 − 4n2m3Kdkd

+2n2mαkdKd − n4mDK2
dkd.

(23)

In the bistable region, the time course of TF-A monomer
concentration x(t) and the probability distribution are plotted
by directly simulating the stochastic differential equation (9)
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Fig. 5. Sample paths and probability distribution of x(t) for different delay
time τ . From top to bottom τ=0.1, 0.3, and 0.5. α=0.01,D=0.15 and λ = 0.3.
The green curve in right is the SPD by using of Eq. (21). The other parameter
values are the same as those in Fig.3.

and by using the theoretical formula (21) for different delay
time, as shown in Fig. 5, respectively. From Fig.5, it is
clear that the TF-A monomer concentration x shifts from the
high concentration state to the low concentration state with
increasing the delay time τ . If we regard the low concentration
state as the “off” state and the high concentration state as the
“on” state, the above result indicates that a switch process
can be induced by the delay time. Figure 5 shows that the
TF-A monomer concentration x concentrates on the high
concentration state when the delay time τ is small, that is,
we begin the switch in the “on” position by tuning the delay
time to a very low value. However, increasing the delay time
causes the low concentration state to become populated. It
means that the concentration of TF-A monomer decreases,
and a flipping of the switch to the “off” position occurs.
Therefore, delay time can be used as a control parameter
for the switch process in the genetic regulatory system. The
agreement between the theoretical and the numerical results
indicates that the approximation method seems to work quite
well for small delay time.

B. Mean value

In order to quantitatively investigate the stationary proper-
ties of the system, we introduce the moments of the variable
x as

〈xn〉st =

∫ +∞

0

xnPst(x)dx. (24)

The mean of the state variable x is

〈x〉st =

∫ +∞

0

xPst(x)dx. (25)

The theoretical and the numerical simulation results of 〈x〉st

as a function of τ is plotted on Fig.6. Figure 6 shows that the

Fig. 6. < x >st is plotted as a function of delay time τ . α = 0.01, D=0.015
and λ = 0.3. The other parameter values are the same as those in Fig.3. The
red sold line represents the theoretical results, and the blue dot line represents
the numerical simulation results.

Fig. 7. MFPT is plotted as a function of the delay time τ .α = 0.01, D=0.015
and λ = 0.3. The other parameter values are the same as those in Fig.3.The
red sold line represents the theoretical results, and the blue dot line represents
the numerical simulation results.

〈x〉st is decreased with increasing τ . When τ is small, the
TF-A monomer concentrates on the high concentration state.
When τ is increased, the TF-A monomer concentrates on the
low concentration state. Namely, for large τ , it is more easy to
be at the “off ” state (the low concentration state). The effect
is similar to the effect of τ on SPD shown in Fig.5. It also
implicates that the time delay induces the gene transition from
the “on ” state to the “off ” state.

C. Mean first passage time

For the delay time−induced switch, we will quantify the
effects of delay time on the switch between the two stable
steady states. When the system is stochastically bistable, a
quantity of interest is the time from one state to the other
state, which is often referred to as the first passage time. We
consider the mean first passage time (i.e., MFPT). Here the
MFPT of the process x(t) to reach the high concentration
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state x+(t) with initial condition x(t = 0) = x− (the low
concentration state) is provided by[38],

T (x− → x+) =

∫ x+

x−

dx

B(x)Pst(x)

∫ x

0

Pst(y)dy. (26)

When the intensities of noises terms D are small enough
compared with the energy barrier height �Φ(x) = Φ(x+) −
Φ(xu), we can apply the steepest-descent approximation to
Eq.(26). Hence T is simplified as following[39]

T (x+ → xu) ≈ 2π√
|U ′′

0 (x+)U ′′
0 (xu)|

exp[
Φ(xu) − Φ(x+)

D
].

(27)
Here, the potential U0(x) is given by Eq.(3) and Φ(x) is given
by Eq.(22). By virtue of Eq.(27), the effects of τ on the MFPT

can be analyzed. MFPT as a function of τ is plotted in Fig.7.
It shows that MFPT decreases monotonously as τ increases.
From the view point of physics, it means that the delay time
can speed up the transition between the two steady states (low
concentration state and high concentration state). Namely, the
delay time τ can accelerate the transition of gene switch from
“on” state to “off” state.

IV. EFFECTS OF TIME DELAY ON STOCHASTIC RESONANCE

In the gene transcriptional regulatory process, the external
environmental factors, such as the electromagnetic field on the
earth, the solar terms and seasonal variation, are the common
features. This means that the transcript of gene should have a
periodic form. For simplicity, a cosinoidal form Acos(Ωt) is
adopted to model the external periodic stimulus. The model
is shown in Fig.8. If considering the effect of noises, the
delay time and the periodic signal, we can rewrite Eq.(9) as
following

dx(t)

dt
=

kfx2(t)

x2(t) + Kd
− kdx(t − τ)

+Rbas − x(t − τ)ξ(t) + η(t) + Acos(Ωt),
(28)

where ξ(t) and η(t) are the Gaussian white noise, and their
statistical properties are given by Eqs.(5)-(8). A is the ampli-
tude of input periodic signal, Ω is the frequency, and τ is the
delay time.

Making use of the small delay time approximation of the
probability density approach and the stochastic equivalence
method, the approximated delay Fokker-Planck equation of
this model is given by

∂P (x, t)

∂t
= − ∂

∂x
[((1 + τ)(

kfx2

x2 + Kd
− kdx + Rbas)

+Acos(Ωt) + D(1 + τ)2x)

−λ
√

Dα(1 + τ))P (x, t)]

+
∂2

∂x2
[(D(1 + τ)2x2)

−2λ
√

Dα(1 + τ)x + α)P (x, t)].
(29)

Fig. 8. Model of genetic regulation with a positive autoregulatory feedback
loop, delay time and an additive signal Acos(Ωt).

Under the constraint x > 0 (the TF-A monomer concentration
x(t) is always higher than zero in the bistable region satisfying
Eq.(2), the quasi-steady-state distribution function Pqst(x, t)
can be derived from Eq.(29) in the adiabatic limit:

Pqst(x, t) = N
(D(1+τ)2x2−2λ

√
Dα(1+τ)x+α)1/2

× exp [−φn(x, t)

D
],

(30)

where N is a normalization constant, φn(x, t) is the general-
ized potential function with the form as below

φn(x, t) = − D

γ0
[γ1 ln(x2 + Kd) + γ2 arctan(

x√
Kd

)

+γ3 ln(Dn2x2 − 2mnx + α)

+
γ4√

Dαn2 − m2n2
arctan(

Dn2x − mn√
Dαn2 − m2n2

)

+
γ5√

Dαn2 − m2n2

× arctan(
Dn2x − mn√
Dαn2 − m2n2

)Acos(Ωt)],

(31)
where n,m, γ0,γ1,γ2,γ3 and γ4 are given by Eq.(23). And

γ5 = −2αKdDn3 + nα2 + 4Kdn
3m2 + Kdn

5D2. (32)

Since the frequency Ω is very small, there is enough time
for the system to reach the local equilibrium during the period
of 1/Ω. On the other hand, assuming that the amplitude of
input periodic signal is enough small (A << 1), it can not
make the particles transit from a well to another well. Using
the definition of mean first-passage time and steepest descent
method, one can obtain the expression of transition rates W±
out of x+, x−,

W+ =

√
|U ′′

0 (x+)U ′′
0 (xu)|

2π
exp[

φn(x+, t) − φn(xu, t)

D
].

(33)

W− =

√
|U ′′

0 (x−)U ′′
0 (xu)|

2π
exp[

φn(x−, t) − φn(xu, t)

D
].

(34)
in which U(x), x+, x−, xu and φn(x, t) are defined by Eq.(3)
and Eq.(31), respectively.

For the general asymmetric nonlinear dynamical system, the
SR phenomenon has been found, and the related theory has
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been developed[40]. Here, we only simply list this method for
calculating signal to noise ratio (SNR).

The system is subjected to a time dependent signal
Acos(Ωt), up to first order on its amplitude (assumed to be
small) the transition rates can be expanded as follows by two-
state model theory:

W+ = μ1 − β1Acos(Ωt),
W− = μ2 + β2Acos(Ωt).

(35)

where the constants μ1,2 and β1,2 depend on the detailed
structure of the system under study. For the asymmetric case,
μ1 �= μ2 and β1 �= β2.

For the general asymmetric case we defined RSNR, the
SNR, as the ratio of the strength of the output signal and
the broadband noise output evaluated at the signal frequency.
Finally, the expression of SNR is given by[40]

RSNR =
A2π(μ1β2 + μ2β1)

2

4μ1μ2(μ1 + μ2)
, (36)

where
μ1 = W+|Acos(Ωt)=0,
μ2 = W−|Acos(Ωt)=0,

β1 =
dW+

d(Acos(ωt))

∣∣∣∣
Acos(Ωt)=0

,

β2 =
dW−

d(Acos(ωt))

∣∣∣∣
Acos(Ωt)=0

,

(37)

According to the expression of SNR in Eq.(36), the effects
of the additive noise intensity α, the correlated noise intensity
λ and the delay time τ on the SNR are analyzed. These
results are plotted in Figs.9-11. In Fig.9-11, there exist one
or two peaks which is the identifying characteristic of the SR
phenomenon. It implicates that the SR happens in this genetic
regulatory system.

The SNR as a function of multiplicative noise intensity D
with different delay time τ = 0.1, 0.3, 0.4 is plotted in Fig.9a
(the other parameters are fixed). It is found that there is a
single peak in RSNR vs. D. The height of the peak is increased
slightly as the delay time τ increases, and the position of the
peak shifts from the large D to small D. It implicates that the
RSNR is enhanced with the increasement of delay time τ . It
must be pointed out that the observed SR is obvious when the
additive noise intensity α and the multiplicative noise intensity
D are very weak.

The SNR as a function of the multiplicative noise intensity
D with different additive noise intensity α = 0.01, 0.03,
0.05 is plotted in Fig.10a (the other parameters are fixed).
Comparing the curve of SNR for α = 0.01 to the curve of
SNR for α = 0.02, the height of the peak is decreased greatly,

Fig. 9. RSNR is plotted as the function of multiplicative noise intensity
D for different delay time τ=0.1, 0.3 and 0.4 with α = 0.01, λ = 0.5,
A = 0.08 and Ω = 0.001, the other parameter values are the same as those
in Fig. 3. (a) Theoretical results (Eq.(31)); (b) numerical simulation results.

Fig. 10. RSNR is plotted as the function of multiplicative noise intensity
D for different additive noise intensity α=0.01, 0.03 and 0.05 with τ = 0.1,
λ = 0.5, A = 0.08 and Ω = 0.001, the other parameter values are the same
as those in Fig. 3. (a) Theoretical results (Eq.(31)); (b) numerical simulation
results.

Fig. 11. RSNR is plotted as the function of multiplicative noise intensity
D for different correlated noise intensity λ=0.1, 0.3 and 0.5 with τ = 0.1,
α = 0.015, A = 0.08 and Ω = 0.001, the other parameter values are
the same as those in Fig. 3. (a) theoretical results (Eq.(31)); (b) numerical
simulation results.
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and the position shifts slightly from the small value of D to
the large value of D. Specially, when α = 0.05, the resonance
bi-peaks are found in the curve of SNR. It means that the
curve of SNR is changed from one peak to two peaks as α
increases. Namely, the additive noise intensity α can restrain
the SR and induce the multiple SR. It must be emphasized
that the height of the first peak of SNR is more lower than
the one of the second peak, and the position of the first peak
is located in the very small value of the multiplicative noise
intensity D.

The SNR as a function of the multiplicative noise intensity
D with different correlated noise intensity λ = 0.1, 0.3, 0.5 is
plotted in Figure.11 a, when the other parameters are fixed. It
is seen that the height of the peak is enhanced greatly as the
λ increases, the positions of the peaks are almost no distinct.
It means that the correlated noise intensity λ can improve the
SR.

Why these different control parameters exhibit various
regulatory properties on the SR? One possible reason is
that the potential function of the bistable gene model is
adjusted differently. The symmetry of potential wells and the
height of potential barrier have different dependences on these
parameters. The quantitative analysis about the underlying
mechanisms of time delay−enhance SR is our next task.

In order to check the valid of the approximate method,
the numerical simulation is performed by directly integrating
the Eq.(28) with Eqs.(5)-(8). Using the Euler method, the
numerical data of time series are calculated using a fast Fourier
transform. To reduce the variance of the result, the 1024
ensembles of power spectra are averaged. The output signal-
to-noise ratio is defined as R = 10log10(Sp(Ωs)/Sn(Ωs)),
where Sp(Ωs) is the height of the peak in the power spectrum
at the input frequency Ωs and Sn(Ωs) is the height of the
noisy background in the power spectrum around Ωs . The
parameters are chosen as the same value in the theoretical
analysis. The results are plotted in Fig.9b, Fig.10b and Fig.11b.
Compared Fig.9a, Fig.10a and Fig.11a. to Fig.9b, Fig.10b
and Fig.11b, respectively, it is clear that the trends of the
approximate theoretical results in the SNR are consistent with
the numerical simulation, which implies that the approximate
method is credible.

V. CONCLUSION

In this article, the roles of time delay in inducing gene
switch and stochastic resonance are systematically studied
based on a gene transcriptional regulatory model. We mainly
concentrated on two aspects, i.e., the dynamical switch char-
acters (including the steady probability distribution, the mean
value and the mean first passage time) and the stochastic
resonance phenomenon. Our theoretical results show that (i)
the delay time resulting from the transcription of tf -a mRNA
and its movement to translation can induce the gene switch
process, i.e., the TF-A monomer concentration x shifts from

the high concentration state to the low concentration state
(“on”→“off”). The delay time τ can also further speed up
the transition from “on” to“off”. (ii) The stochastic resonance
can be enhanced by the time delay τ and the correlated noise
intensity λ. However, the additive noise original from the
synthesis rate Rbas can suppress the stochastic resonance. It
is very interesting that the bi-peaks structure is found when
α =0.05. Through our stochastic delay dynamic approach,
the critical physiological control parameters to which the
behavior of special genetic regulatory systems is particularly
sensitive are identified. Our theoretical results based on small-
delay time-approximation approach are consistent with the
numerical simulation, which implies that the approximate
method is reliable. These insights on the combined effects of
noises and time delay would be beneficial to understanding the
basic mechanism of how living systems optimally facilitate to
function under real environments.

How could our predictions be related to the experiments?
To test our predictions quantitatively, one would ideally like to
perform an experiment on this gene transcriptional regulatory
model with tunable time delay and other control parameters,
in which all the parameters concentrations of components and
rate constants are the same as our theoretical model. To our
knowledge, this clearly seems a very difficult experiment to
perform, what we do is to give a primary picture of the
integrated effects of time delay and noise. Recently, with
the development of synthetic biology, some artificial gene
networks are designed by genetic engineer. Moreover, it is
increasingly being recognized that some biological parameters,
including time delay and feedback strength, can be controlled
by using micro-fluidic devices in gene regulatory network. So
we wish that the time delay−accelerated transition of gene
switch and time delay−enhanced stochastic resonance could
be examined in future.
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APPENDICES

In this section, we consider the delay effect in the Hill
function. the delay effect on the Hill function in Eq. (4) is
considered in this section. Then, kf x2(t)

x2(t)+Kd
→ kf x2(t−τ)

x2(t−τ)+Kd
,

and Eq. (4) can be rewritten:

dx(t)

dt
=

kfx2(t − τ)

x2(t − τ) + Kd
− kdx(t) + Rbas − x(t)ξ(t) + η(t),

(A.1)
where the first term on the right side is evaluated at a time
τ (delay time) previous to the time when dx/dt is computed,
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Fig. 12. The numerical simulations of the probability distribution Pst(x) are
plotted with the different delay time τ=0.1, 0.3, 0.5, 1, 2, 5 with α = 0.005,
D = 0.015, and λ = 0.3

Fig. 13. The numerical results of the mean value of x(t))for this system
as a function of large τ2 are plotted with α = 0.005, D = 0.03, λ = 0.3
in the nonlinear delay case. The other parameters are the same as those in
Fig.3.

and is nonlinear time-delayed, and the delay time does not
appear in the stochastic fore.

For the sake of the difficult to deal with from the aspect
of the theory, here the following results are given by directly
simulating the stochastic delay differential Eq. (A.1), and it
can be formally integrated by using a simple forward Eular
algorithm with a small time step for small and large delay
time.

Figure.12 shows the SPD as a function of the TF-A
monomer concentration x for the delay time τ . This result
shows that the TF-A monomer concentration x shifts from the
low concentration state to the high concentration state with the
delay time τ increasing

The numerical results of the mean value of x(t))for this

Fig. 14. The numerical results of the mean first passage time (MFPT)for
this system with the initial condition x− are plotted as a function of large τ2
with α = 0.005, D = 0.03, λ = 0.3 in the nonlinear delay case. The other
parameters are the same as those in Fig.3.

system as a function of τ are plotted in Fig.13. The result
presents the mean value of x(t)) increases with τ increasing.

Figure 14 shows the MFPT of the gene transcriptional reg-
ulatory system for the delay time in the nonlinear delay case.
It shows that there exists a resonance restrain phenomenon for
the small τ . Namely, the small delay time region the MFPT
behaves as one maximum. The peak of the MFPT actually
corresponds to the suppression plateau in the curve of ν − τ
(escape rate ν, defined as 1/T ). It implies that the delay time
τ2 can restrain the transition from “off” state to “on” state.
It must emphasized that the MFPT decreases monotonously
with τ increasing and there is no extremum, when the delay
time is large. Namely, in the large delay time region the delay
time τ2 can speeds up the transition from “off” state to “on”
state.
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