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Abstract- Single amino acid polymorphisms (SAPs) are the most 
abundant form of known genetic variations associated with 
human diseases. It is of great interest to study the 
sequence-structure-function relationship underlying SAPs. In 
this work, we collected the human variant data from three 
databases and divided them into three categories, i.e. cancer 
somatic mutations (CSM), Mendelian disease-related variant 
(SVD) and neutral polymorphisms (SVP). We built support 
vector machine (SVM) classifiers to predict these three classes 
of SAPs, using the optimal features selected by a random forest 
algorithm. Consequently, 280 sequence-derived and structural 
features were initially extracted from the curated datasets from 
which 18 optimal candidate features were further selected by 
random forest. Furthermore, we performed a stepwise feature 
selection to select characteristic sequence and structural 
features that are important for predicting each SAPs class. As a 
result, our predictors achieved a prediction accuracy (ACC) of 
84.97, 96.93, 86.98 and 88.24%, for the three classes, CSM, SVD 
and SVP, respectively. Performance comparison with other 
previously developed tools such as SIFT, SNAP and Polyphen2 
indicates that our method provides a favorable performance 
with higher Sensitivity scores and Matthew’s correlation 
coefficients (MCC). These results indicate that the prediction 
performance of SAPs classifiers can be effectively improved by 
feature selection. Moreover, division of SAPs into three 
respective categories and construction of accurate SVM-based 
classifiers for each class provides a practically useful way for 
investigating the difference between Mendelian disease-related 
variants and cancer somatic mutations. 

Keywords: single amino acid polymorphisms (SAPs); 
non-synonymous SNPs; support vector machine; random forest; 
feature selection 

I. INTRODUCTION 
Single nucleotide polymorphisms (SNPs) are the most 

abundant form of genetic variations, accounting for 
approximately 90% of DNA polymorphisms in humans [1, 2]. 
It is estimated that on average there is a SNP for every 300 
base-pairs. SNPs in coding and regulatory regions may play a 
direct role in diseases or differing phenotypes [3]. Among them, 
the single amino acid polymorphisms (SAPs, also referred to as 
non-synonymous SNPs or nsSNPs) [3] are of special interest, 

as they lead to the change of amino acid types in the resulting 
protein products. 

As many as 200,000 SAPs are estimated to be present in the 
human genome [4] and roughly 24,000-60,000 in an individual 
[5, 6]. This implies that there are 1-2 mutants per protein 
product. However, most of these mutants do not change the 
function of proteins. Therefore, discriminating the neutral and 
non-neutral mutants is urgently needed to understand the 
genotype/phenotype correlations and find the cure for diseases. 
Analyses of protein structure and function have suggested that 
single amino acid substitutions are responsible for certain 
disease types [7-9]. For example, it has been reported that 
about 60% of Mendelian disease is caused by amino acid 
substitutions [9, 10]. As the consequence of large-scale efforts, 
e.g. the HapMap project (http://www.hapmap.org) and the 
whole genome association studies [11], experimental SAPs 
data are accumulating rapidly in public databases including 
dbSNP, Swissprot variants and COSMIC (Catalogue of 
Somatic Mutation in Cancer) databases. 

Previous analyses [3, 5, 12-15] generally divided the amino 
acid mutations into two classes, i.e. neutral and non-neutral 
mutants [9]. However, the non-neutral mutants can affect the 
function of proteins with varying levels of  severity of 
phenotypic effects [5]. Hence, we further divided the 
non-neutral mutants into two classes: i) Mendelian 
disease-related variants (SVD) and ii) cancer somatic 
mutations (CSM) in addition to the neutral polymorphisms 
(SVP). Gong and Blundell have performed a similar analysis 
recently [9]. They analyzed disease-related variants and cancer 
somatic mutations. Compared to the conventional binary 
classification of SAPs, the three-class division has a more 
practical significance in discriminating different functional 
effects of SAPs and is able to shed light on the nature of the 
sequence-structure-function relationships of human SAPs. 

In the past few decades, a variety of bioinformatic methods 
have been developed to predict possible disease association or 
functional effect of a given variant [3, 14-21]. A consensus of 
these methods is that they employ sequence or/and structural 
features and use them as input to train classifiers with various 
algorithms. They were based on statistical rules, decision trees, 
support vector machines (SVMs), neural networks, random 
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forests and Bayesian networks and were applied to annotate 
mutants data. With the increasing availability of SAPs data, 
however, computational methods that are capable of predicting 
the functional effects of SAPs with better accuracy are 
consistently urgently needed. 

In this study, we describe a new approach to classify SAPs 
into three different categories (CSM, SVD and SVP) and 
predict possible disease associations of SAPs, using SVMs 
augmented with efficient feature selection by random forest. 
We benchmarked this approach based on the rigorous 5-fold 
cross-validation tests and compared the prediction 
performance with other published tools. As a result, 18 optimal 
candidate features were selected from an initial set of 280 
sequence and structural features. The SVM classifiers trained 
with the 18 selected optimal features achieved an accuracy of 
84.97, 96.93, 86.98 and 88.24%, for the three-class, individual 
CSM, SVD and SVP class predictions, respectively. 

II. METHODS 

A.  Datasets 
We followed the same procedures as described in [9] to 

retrieve and compile a high-quality structural dataset of human 
variants. In particular, the SVD annotations were extracted 
from the UniProt [22] human sequence variations (release 
57.5). CSM was taken from the COSMIC database  
(Catalogue of Somatic Mutation in Cancer, version: 48) [23] 
from which we chose the mutations that led to amino acid 
changes. SVP was taken from the Ensembl human variation 
database [24] (version 59_37d). In this study, we only 
extracted and used the verified SNPs to construct the structural 
dataset. 

B. Sequence and structural features 
Sequence feature: We extracted four different types of 

sequence-based features that proved useful in improving 
prediction performance. They include: (1) position-specific 
scoring matrics (PSSMs) generated by PSI-BLAST [25]; (2) 
predicted secondary structure by PSIPRED [26]; (3) predicted 
solvent accessibility by SCRATCH [27]; (4) predicted native 
disorder by DISOPRED [28]. Combination of these 
sequence-derived features has been shown to improve 
prediction performance in our recent work and that of others 
[29-32]. 

PSSM profiles: To generate the PSSMs, PSI-BLAST was 
run to search against the NCBI nr database with three iterations. 
Then the alignment profile and the obtained PSSMs were 
retained. 

Solvent accessibilities: We used the NACCESS program 
[33] to calculate the absolute and relative solvent accessibilities 
of all atoms, total side chain, main chain, non-polar side chain 
and all-polar side chain, respectively. 

Neighboring functional sites: If a mutation position is 
neighboring or close to the functional sites of a protein, it is 
more likely to be deleterious or disease associated. The 
annotations regarding the functional sites can be found in the 
“FT” line in UniProt database [22]. In our work, we extracted 
eight different types of UniProt functional features: 
ACT_SITE, BINDING, CA_BIND, DISULFID, DNA_BIND, 
LIPID, MENTAL, NP_BIND and MOD_RES. In addition, 
two other different types of neighboring functional sites were 

also taken into account. They included sequence neighbors and 
spatial neighbors, which were defined using the sequence and 
structural distances, respectively [3]. 

Aggregation properties: We used TANGO [34] to calculate 
the residue β-aggregation properties at mutation sites [3]. 
Particularly, we investigated whether inclusion of this feature 
could result in a performance improvement of deleterious 
mutation prediction. 

Secondary structure features: We used DSSP [35] to 
extract the secondary structure annotations, including the 
number of H-bonds and disulfide bonds, solvent-accessible 
surface area, dihedral angle, Cα atom coordinates, protein 
backbone torsion angles (PHI and PSI angles) and so on. 

Scores calculated by other softwares: 1) PSIC score: it 
represents how likely it is for a particular amino acid to occupy 
a specific position in protein sequence, calculated by PSIC [36]; 
2) SIFT score: SIFT is a program that uses sequence homology 
to predict whether a substitution affects protein function [37]. 
For each mutation, five scores were calculated by SIFT and all 
of them were included in our feature sets; 3) SNAP score: 
SNAP is a method that predicts the functional effects of single 
amino acid substitutions [5, 38]. It calculated two scores and 

 
Figure 1.  Schematic representation of the data collection, homology 

reduction, stepwise feature selection, parameter optimization, SVM model 
training and validation processes. 
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both were selected as features; 4) Polyphen2 score: Polyphen2 
is a tool for predicting damaging effects of missense mutations 
[39] and it calculated four scores, all of which were used as 
features. 

C. Selection of local sliding window size and reduction of 
sequence homology 
We used PSSMs as input to the SVM models in order to 

select the optimal local sliding window size of L. 11 different 
window sizes were examined and compared, i.e. L=1, 3, 5, 7, 9, 
11, 13, 15, 17, 19, 21. 

To perform sequence homology reduction and avoid the 
potential overfitting problem, we used Cd-hit [40] to cluster 
protein sequences in our datasets, with varying sequence 
identity (SI) levels of 40, 50, 60, 70, 80, 90 and 100%, 
respectively. 
D. Random forest feature selection 

Random forest (RF) is an ensemble classifier based on 
decision trees [12, 41], which can be used for solving 
classification and regression tasks. 

The RF package in R has been widely employed in 
bioinformatics, such as protein-RNA binding sites [42] and 
protein-protein interaction prediction [43]. More recently, RF 
has been successfully applied to perform feature selection in 
combination with SVM, for example, in the prediction of 
siRNA potency [44] and domain linker [45]. 

We used the mean decrease Gini index (MDGI) to select 
the more informative features, as calculated by the RF package 
in R [41]. MDGI represents the importance of individual vector 
element for correctly classifying SAPs. The mean MDGI 
Z-Score of each vector element is defined as: 

( ) /iMDGI Z Score x x σ⋅ − = −  
where xi is the mean MDGI of the i-th feature and σ is the 
standard deviation (SD), respectively. The vector element with 
MDGI Z-Score larger than 1.0 was selected as an optimal 
feature candidate (OFC). The feature selection based on RF 
was applied to the 3-class classification, but not to the binary 
classifications of CSM, SVD and SVP. 
E. Stepwise feature selection 

In addition, we performed a stepwise feature selection by 
training and evaluating four different SVM classifiers based on 
the 5-fold cross-validation tests. We divided our dataset into 
five subsets- in each validation step, four subsets were used to 
learn and train a model, while the rest one was used to validate 
the model. This procedure was repeated five times  such that 
every subset was used in the training and was validated in the 
testing. 

The stepwise feature selection works by training an 
original SVM with an initial feature set (OFC) for the first 
round. Then in the next round, one feature will be removed 
from the initial feature set once a time. If the accuracy of the 
resulting SVM classifier achieved a better accuracy, such 
feature would be removed. This stepwise feature selection 
process was repeated until the accuracy no longer increased. 
Through this process, more important and informative features 
can be identified. The detailed procedures are depicted in 
Figure 1. 

F. SVM classifiers 
Support vector machine (SVM) is a sophisticated 

supervised machine learning technique based on statistical 
learning theory. SVM has been widely used in bioinformatics, 
such as protein-protein interaction prediction and domain 
linker prediction [45]. For the implementation of SVM in this 
study, we used the LIBSVM package [46]. We selected the 
radial basis function (RBF) as the kernel function, and 
employed ‘grid-search’ to optimize the SVM parameters, i.e. γ 
of the RBF kernel and the regularization parameter C based on 
5-fold cross-validation tests. C and γ were set within the range 
of 2-8-28. We used the ‘one-against-one’ (pair-wise) method to 
train the multi-class (three-class) SVM classifiers. 

We built four SVM classifiers to predict the three classes 
and each individual class of SAPs. The four classifiers are thus 
termed as SVM3class, SVMCSM, SVMSVD and SVMSVP, 
respectively. Here, SVM3class represents a 3-class SVM 
classifier for predicting CSM, SVD and SVP. SVMCSM denotes 
a binary SVM classifier, where the CSM data were trained as 
positives and the remaining two classes of SVD and SVP were 
merged as negatives. SVMSVD and SVMSVP have similar 
meanings as SVMCSM, for which SVD and SVP were in turn 
used as positives. 
G. Performance Evaluation 

We used Sensitivity (SN), Specificity (SP), Accuracy 
(ACC) and the Matthew’s correlation coefficient (MCC) to 
evaluate predictive performance of our method. 

The Sensitivity (SN) is defined as: 
( )SN TP TP FN= +  

The Specificity (SP) is defined as: 
( )SP TN TP FP= +  

The overall Accuracy (ACC) is defined as: 
( ) ( )ACC TP TN TP TN FP FN= + + + +  

The Matthew’s correlation coefficient (MCC) [43] is 
defined as: 

( ) ( ) ( ) ( )
TP TN FP FNMCC

TP FN TP FP TN FN TN FP
× − ×

=
+ × + × + × +

 

where TP is the number of true positives, TN is the number of 
true negatives, FP is the number of false positives and FN is 
the number of false negatives, respectively. 

III. RESULTS 

A. Compilation of datasets 
We followed the same procedures in previous work to 

collect variants data [9], i.e. from the following resources: 1) 
COSMIC database [23]; 2) UniProt human variants [48, 49] 
and 3) Ensembl human variation database [24] (See Materials 
and Methods for more details). The residue positions of 
variants from the source data, namely, the residue positions in 
protein sequences in UniProt, were mapped onto the 
corresponding locations in three-dimensional PDB structures if 
available [50, 51]. TABLE IV in the Supplementary Material 
shows the statistics of the collected variants from the resources 
data, the collected variants from the resources data, with 
mapping onto the UniProt sequence and PDB structure levels, 
respectively. Finally, we removed the overlapping variants 
data in CSM, SVD and SVP datasets. 
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B. Sliding window size selection and sequence homology 
reduction 
We used the PSSM feature as input to train the SVM 

classifiers in order to determine the optimal sliding window 
size of L, by using the training sets with varying sequence 
identity (SI) levels, as clustered by Cd-hit [40]. Figure 2 shows 
the change of accuracies in relation to the SI levels and the 
sliding window size L. As can be seen, ACC increased by 1.5% 
with the SI decreasing from 100 to 40%. It is worth noting that 
ACC is not the only performance measure of the SVM 
classifiers in this study. In particular, for a highly unbalanced 
dataset, higher ACC does not always mean that the prediction 
performance of a predictor is satisfactory. Thus, in order to 
comprehensively evaluate the performance of classifiers, we 
also used other measures such as Sensitivity, Specificity and 
MCC. Secondly, the ACC does not necessarily correspond to 
the SI. In other words, lower SI level does not necessarily mean 
lower ACC would be achieved. In view of this, we think it is 
reasonable that the ACC increased by 1.5% with the SI 
decreasing from 100 to 40%. The window size of L=3 and 
SI=40% led to the overall highest ACC of 85%. In the 
following analysis, we then fixed the local window size at L=3 
and used the training dataset clustered at the SI level of 40% to 
build the SVM classifiers and evaluate prediction performance. 

C. Optimal feature selection by random forest 
The optimal features were selected in two steps. In the first 

step, RF was used to evaluate the importance of a total of 280 
features using the mean MDGI Z-Score. Finally, eighteen 
features with the mean MDGI Z-Score >1.0 were selected as 
the optimal feature candidates (OFCs) (Figure 3). The feature 
with the highest mean MDGI Z-Score is the structural distance 
between the mutation position and the DNA binding site, with 
Z-score of 9.393. Interestingly, the sequence distance between 
the mutation position and the DNA binding site also has a high 
Z-Score of 7.107. 

We compared the MDGI Z-scores of 18 selected features in 
the CSM, SVD and SVP datasets and performed the ANOVA 
analysis [52, 53]. This analysis provides a statistical test of 
whether or not the means of several sources are equal and thus 
is useful for comparing the means of more than two samples. 
The results are shown in TABLE I. Most selected features are 
significantly different in different types of mutant datasets, 
with the P-value <<0.05. The only exception is that the SIFT_3 
feature has a P-value of 0.0606, which is slightly larger than 
0.05. 
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Figure 2.  Correspondence between the overall Accuracy (ACC) and sequence 

identity (SI) levels, based on different sliding window sizes (L). 
Figure 3.  Ranking of the optimal feature candidates based on the MDGI 

Z-Scores that indicate their importance to performance improvement. 

.

TABLE I.  THE AVERAGE VALUES AND STANDARD DEVIATIONS FOR THE CSM, SVD AND SVP DATASETS. 

Name Annotation MDGI 
Z-Score 

CSM SVD SVP 
P-value 

Average value±SD 

DNA_3D_dis 3D distance between variant mutation 
position and DNA_BIND site 9.39 20.58±6.05 26.04±8.93 59.91±26.33 2.20E-16 

DNA_seq_dis 
Sequence distance between variant 
mutation position and DNA_BIND 

site 
7.11 100.18±51.80 170.57±104.15 255.65±120.64 2.20E-16 

mod_3D 3D distance between variant and 
MOD site 4.11 20.425±14.08 40.58±24.49 47.041±30.07 2.20E-16 

Polyphen_4 Polyphen2 true positive rate 4.07 0.45±0.37 0.38±0.37 0.79± 0.31 2.20E-16 

Polyphen_3 Polyphen2 false positive rate 4.04 0.096±0.19 0.07±0.14 0.40± 0.40 2.20E-16 

Polyphen_2 Polyphen2 probability 3.52 0.81±0.34 0.85±0.31 0.37±0.43 2.20E-16 

Sift_5 Sequences at Position 2.97 171.71±64.47 173.44±136.40 125.05±123.26 2.20E-16 
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Sift_3 Median Information 2.86 2.89±0.23 2.88±0.29 2.86±0.41 0.061 

Sift_4 Sequences at Position 2.67 165.98±64.54 170.10±136.41 119.54±122.76 2.20E-16 

Polyphen_1 Polyphen2 prediction 2.52 / / / / 
Sift_2 SIFT Score 2.44 0.10±0.21 0.054±0.15 0.29±0.33 2.20E-16 

dis_3D 3D distance between variant mutation 
position and origin of coordinates 1.95 32.06±25.60 54.33±32.65 55.78±31.78 2.20E-16 

Z-ca_54 The Z coordinate of Cα in the residue 
after variant mutation residue 1.69 -3.41±26.09 20.36±35.86 20.84±33.45 2.20E-16 

Z-ca_53 The Z coordinate of Cα in the 
mutation residue of variant 1.83 -3.46±26.13 20.37±35.91 21.16±33.61 2.20E-16 

Z-ca_52 The Z coordinate of Cα in the residue 
before variant mutation residue 1.67 -3.30±25.87 20.20±35.99 21.15±33.71 2.20E-16 

np_3D 3D distance between variant and 
NP_BIND site 1.42 67.56±47.92 49.31±33.44 46.14±33.94 7.66E-4 

Sift_1 SIFT prediction 1.15 / / / / 
Snap_1 SNAP prediction 1.08 / / / / 

D.  Stepwise feature selection and SVM parameter optimization 
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Figure 4.  Performance improvement of the SVM classifiers during the stepwise feature selection. 

The second step is a stepwise feature selection. If the 
removal of a feature leads to a higher prediction accuracy, 
that feature will be removed from the feature set. By 
iteratively examining and removing the redundant and less 
informative features in the initial feature set, it is expected 
that the prediction performance can be enhanced during this 
process. Figure 4 showed the resulting performance based on 
stepwisely selected features for four SVM classifiers. We 
can see that the SVM3class classifier achieved the highest 
accuracy of 83.78%. It was built after 12 rounds of stepwise 
feature selection and as a result, 12 features were removed. 
In the case of SVMCSM, it achieved an accuracy of 96.65%, 
with 9 features removed. In the case of SVMSVD, it removed 
7 features and attained the highest accuracy of 86.16%. 

SVMSVP also removed a few less informative features and 
achieved a prediction accuracy of 87.77%. 

We further calculated the prediction performance of the 
SVM classifiers trained with feature subgroups with various 
levels of Z-Scores and compared with the SVM classifier 
trained based on stepwise feature selection. The results 
indicate that the classifier based on stepwise feature group 
selection achieved the overall best ACC than any other 
feature subgroups, with Z-Scores larger than 1, 2 and 3, 
respectively (Supplementary Table V). Depending on the 
SAPs class, different feature groups have different influence 
on the prediction performance. For example, the SVM3class 
classifiers based on the feature groups OFC-2 and OFC-3 
achieved almost the same ACCs, while the SVMSVP 
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classifier based on OFC-2 attained better accuracy than that 
based on OFC-3. These results indicate that feature selection 
by Z-Scores only may overlook important complementary 
features and inclusion of the seemingly ‘useless’ features 
may become useful for improving the prediction 
performance. 

We optimized the parameters (C, γ) of SVM using the 
‘grid.py’ module in LIBSVM. TABLE II presents the 
prediction performance of four SVM classifiers with the 
optimized parameters (C, γ). They changed after each 
stepwise feature selection, with the accuracy consistently 
improved. The ACC increased from 83.78 to 84.97%, from 
96.65 to 96.93%, from 86.16 to 86.98% and from 87.77 to 
88.24%, for the SVM3class, SVMCSM, SVMSVD and SVMSVP 

classifiers, respectively. 

TABLE II.  THE IMPROVEMENT OF ACCURACY BY PARAMETER 
OPTIMIZATION 

 ACC 
(%) 

Original 
 C 

Original 
γ 

ACC 
(%) 

Final 
C 

Final 
γ 

SVM3class 83.78 1.0 0.015625 84.97 1.0 2.0 
SVMCSM 96.65 2.0 0.0625 96.93 1.0 0.015625 
SVMSVD 86.16 8.0 0.015625 86.98 2.0 0.0039063 
SVMSVP 87.77 1.0 0.0078125 88.24 2.0 0.0039063 

E. Performance improvement by optimal feature 
selection and parameter optimization 

 
Figure 5.  The ROC curves of four SVM classifiers based on 5-fold 

cross-validation tests of 5,109 variants, trained with the selected optimal 
features 

To further evaluate the predictive performance, we plotted 
the receiver operating characteristic (ROC) curves using 
the “ROCR” package [54], as shown in Figure 5. The area 
under the ROC curve (AUC) is a measure of the overall 
quality of the prediction, incorporating both the Sensitivity 
and Specificity measures. The uppermost curve with the 
largest AUC indicates the best prediction model. From 
Figure 5, we can see that the classifier SVMCSM has the 
best prediction performance with the AUC of 0.9504. The 
SVMSVD classifier has an AUC value of 0.9190, while the 
SVMSVP has an AUC of 0.8612. As the SVM3class classifier 
is a three-class model, it is not applicable to generate the 
ROC curve. 

F. Comparison with other prediction tools 
We next compared the predictive performance of our 

SVM predictor with other previous prediction tools. SIFT is 
a program that uses sequence homology to predict whether a 
substitution affects protein function, and its output has five 
values [37, 55, 56]. The first value is “tolerant” or 
“deleterious”, which is similar to our SVMSVP predictor as 
both are binary classifiers. In our SVMSVP classifier, the 
positive class is the SVP subset, while the negative class is 
the CSM and SVD subsets. The performance comparison is 
shown in TABLE III. We can see that SVMSVP achieved the 
Sensitivity, Specificity, Accuracy and MCC scores of 
76.60%, 90.19%, 88.24% and 0.593, respectively, while 
SIFT achieved the Sensitivity, Specificity, Accuracy and 
MCC of 40.92%, 90.04%, 75.25% and 0.360, respectively. 
This suggests that our classifier provides a better 
performance than SIFT, with the accuracy significantly 
increased from 75.25 to 88.24%. However, the Specificity 
(90.19%) of our method is close to SIFT (90.04%). The 
Specificity measures the proportion of negatives that are 
correctly identified. Thus, our method and SIFT have the 
comparable capabilities to predict the negatives. Sensitivity 
(also referred to as Recall in the information retrieval field) 
measures the proportion of actual positives that are correctly 
identified as such. Hence, our method is more accurate than 
SIFT, with the Sensitivity improved from 40.92 to 76.60%. 
SNAP is another tool that predicts the functional effects of 
single amino acid substitutions. It outputs the value of 
“neutral” or “non-neutral”. To compare our method with 
SNAP, we calculated the SN, SP, ACC and MCC based on 
5-fold cross-validation tests and listed the results in TABLE 
III. It can be seen that our SVMSVP classifier achieved a 
higher prediction performance than SNAP in terms of the SN, 
SP, ACC and MCC measures. Similar to SIFT, SNAP also 
has a higher specificity of 86.33%, in contrast to the 
Sensitivity of 50.82%. 

Polyphen2 is a tool for predicting damaging effects of 
missense mutations. It divides the variants into three 
categories- “benign”, “probably damaging” and “possibly 
damaging”. In this study, we defined the “probably 
damaging” and “possibly damaging” as the negatives. The 
resulting SN, SP, ACC and MCC of Polyphen2 are listed in 
the row Polyphen22class in Table III. We can see that the SN, 
SP, ACC and MCC of Polyphen22class are higher than those 
of SIFT and SNAP, but are lower than those of our SVMSVP 
classifier. In addition, if we did not combine the “probably 
damaging” and “possibly damaging” and instead defined the 
“probably damaging” as SVD-class, and “possibly 
damaging” as CSM-class, then Polyphen2 would become a 
three-class predictor. We then calculated the ACC of 
Polyphen23class, which was 61.74% and was much lower than 
our SVM3class predictor (Table III). In conclusion, our 
method provides a favorable performance compared with the 
other three tools. 

In this study, the overfitting issue is potentially alleviated 
by the following three strategies we adopted: 1) The training 
set used in this study was mapped to the PDB structures with 
sequence identity of 40%. The sequence and structural 
features were extracted from this non-redundant structural 
dataset; 2) We used a stepwise feature selection to select the 
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optimal candidate features. The selected features this way 
constitute a reliable and robust feature subset; 3) We 
performed 100 iterations of Random Forest algorithm to 
calculate the Z-scores of each feature, and finally selected 18 
features with Z-scores larger than 0. Therefore, based on the 
above strategies, we suggest that the overfitting issue is 
effectively alleviated and relatively less severe. 
TABLE III.  PERFORMANCE COMPARISON OF OUR SVM3CLASS, SVMCSM, 
SVMSVD, SVMSVP CLASSIFIERS WITH SIFT, SNAP, POLYPHEN22CLASS AND 

POLYPHEN23CLASS. THE PREDICTION PERFORMANCE WAS EVLUATED USING 

5-FOLD CROSS-VALIDATION TESTS. 

Method SN (%) SP (%) ACC (%) MCC 

SVM3class -a - 84.97 - 
SVMCSM 98.44 96.63 96.93 0.898 
SVMSVD 86.65 87.64 86.98 0.723 
SVMSVP 76.60 90.19 88.24 0.593 

SIFT 40.92 90.04 75.25 0.360 
SNAP 50.82 86.33 80.81 0.340 

polyphen22class 55.89 89.84 83.00 0.464 
polyphen23class - - 61.74 - 

a “-” denotes that the prediction result at this specificity level 
is not available by this tool. 

IV. DISCUSSION 
There are a number of bioinformatic approaches 

developed to predict the functional impact of SAPs, 
classified as either ‘deleterious’ or ‘neutral’ in the 
training/validation stages. These include empirical rules and 
machine learning techniques such as decision tress, support 
vector machines, neural networks, etc. All machine learning 
methods require a dataset of SAPs data for model training 
and error rate estimation [2]. However, a critical question to 
address is how to select the appropriate training data. In a 
recent work by Care et al., the authors showed that 
differences in training datasets derived by different ways can 
give rise to trained classifiers with varying error rates, 
thereby making some of them less ideal for SAPs prediction 
[2]. We appreciated this enlightening work and have 
carefully curated and checked the consistency of collected 
structural mutants by mapping them onto UniProt and 
carefully removing the unreliable data. 

Different from the majority of previous works, in this 
study, we divided the human SAPs mutants into three 
detailed classes rather than two conventional classes (being 
deleterious or neutral). This provides an intuitively and 
conceptually better way to characterize the differences 
between cancer somatic and Mendelian disease-related 
variants. By doing so, some important and critical features 
between different SAPs classes can be better extracted and 
identified (as listed in TABLE I). For example, we found that 
the distance between the variant and some function sites is an 
important descriptor for predicting CSM, SVD and SVP, 
which is significantly different between different mutant 
types by the ANOVA statistical test. 

Another important feature, DNA_3D_dis, describes the 
3D distance between the variant mutation position and DNA 
binding sites. Inclusion of this feature is crucial for our SVM 

classifiers. This is understandable as the closer to the DNA 
binding site, the larger its chance to affect the DNA binding 
site, and consequently the more likely mutations at such 
position will change the DNA expression, thus making it an 
important descriptor. Similarly, other distance descriptors 
are important for the prediction of mutational effects, 
possibly due to the similar reason. 

Z-ca is the coordinate of Cα atom of an amino acid 
residue. It can be seen that the average Z-ca of the CSM class 
is about -3.4, which is remarkably different from that of SVD 
and SVP (average of 20~21, P-value of 2.20E-16). The 
reason is that the majority of the variants in the CSM 
category (786 out of 964) are actually from a single protein, 
i.e. P04637 (PDB_ID: 3D06_A). 

Compared with the 18 selected optimal features, 
secondary structure features are not included in the final 
feature set. This suggests that secondary structure features 
are less important in contrast to other optimal features that 
were finally selected. 

To compare our method with SIFT, SNAP, Polyphen2, 
we applied these tools to the same datasets and calculated 
their prediction performances in this study. We then 
compared these tools with our method. SIFT is based on the 
principles of protein evolution and most of its features are 
sequence-derived. It was previously reported that SIFT 
could correctly predict that 69% of the substitutions 
associated with a certain type of disease [55]. In our study, 
the ACC of SIFT was 75.25% and the MCC was 0.360. 

SNAP and Polyphen2 used many features including 
sequence, structural, function site feature and many others. 
SNAP used neural networks, while Polyphen2 used the 
Naïve Bayes approach. As a comparison, our method used 
the random forest algorithm to select optimal feature 
candidates and applied SVM to train the prediction models 
based on the optimally selected features and SVM 
parameters. As a result, our method provides a favourable 
performance in comparison with the former three tools. 
However, the contribution or relative importance of each 
selected features to performance improvement of a SVM 
classifier is different, depending on a particular SAPs 
category (Figure 4). For instance, the scores of SIFT, SNAP 
and Polyphen2 are critical for SVMSVP, only the sift_5 
feature was removed from the final optimal features (Figure 
4). Although sift_1, snap_1, and polyphen_1 were all 
included in the final optimal feature set in all three SAPs 
classes, they are particularly more important for improving 
the prediction accuracy of SVMSVP and SVMSVD, but are less 
important for SVMCSM. The reason might be that although 
our datasets were divided into three classes, SIFT, SNAP 
and Polyphen2 did not specifically train a third additional 
predictor for the CSM class, i.e. the cancer somatic 
mutations. In a sense, the training dataset of SVMSVP is more 
similar to that of SIFT, SNAP and Polyphen2, as they were 
specifically developed to predict the SVP class. Therefore, 
features such as sift_1, snap_1, and polyphen_1 are more 
important for SVMSVP. Additionally, SNPs3D is another 
similar tool for predicting SAPs [57]. Nevertheless, as its 
coverage to our datasets is very low (909/5109), we did not 
include it in our comparison. 
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V. CONCLUSION 
In this work, we have collected and selected 5,109 

human variants from three public databases and categorized 
them into three classes, i.e. CSM, SVD and SVP. Important 
sequence and structural features in our datasets were 
extracted and selected using a random forest algorithm. 
Moreover, we have stepwisely selected the optimal features 
and four built predictors SVM3class, SVMCSM, SVMSVD and 
SVMSVP achieved the ACC of 84.97, 96.93, 86.98 and 
88.24%, respectively. The ACC were further improved after 
SVM parameter optimization. To validate our approach, we 
compared it with three other tools SIFT, SNAP and 
Polyphen2 and showed that our method provides a favorable 
performance than these three methods in terms of SN, SP, 
ACC and MCC measures. We expect that our approach 
offers useful insights in predicting the functional impact of 
different types of SAPs with more available 3D structure 
data. 
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SUPPLEMENTARY MATERIAL 

TABLE IV.  THREE TYPES OF MUTATION VARIANTS AND THEIR STATISTICS 

Source Type Abbreviation 
Number of distinct 
variants from the 

sources 

Mappped 
to UniProt 

Mapped 
to PDB 

Further 
refined 

40% Sequence 
identity 

UniProt Disease SVD 19270 19270 4495 3677 3153 
Ensembl Verified SNPs SVP 43906 25425 1734 1242 992 
COSMIC Cancer mutations CSM 11306 3382 1455 1029 964 

TABLE V.  COMPARASION OF ACC (%) OF DIFFERENT FEATURE GROUPS 

Feature group Abbreviation 
ACC (%) 

SVM3class SVMCSM SVMSVD SVMSVP 
MDGI Z-Score>1.0 OFC-1 72.20 88.54 75.08 81.41 
MDGI Z-Score >2.0 OFC-2 80.76 92.46 82.62 85.91 
MDGI Z-Score >3.0 OFC-3 80.74 95.69 81.89 80.58 

Optimal features by stepwise feature selection OFC-s 83.78 96.65 86.16 87.77 
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