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OverviewOverview

Systems Biology and Optimization

Choice of a Suitable Model

Bottom-up and Top-down Model Estimation

Technical Issues

Dynamic Flux Estimation

Open Problems
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Application: Pathway ModelingApplication: Pathway Modeling
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Overview of Modeling ProcessOverview of Modeling Process
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Formulation of aFormulation of a
Dynamical Systems ModelDynamical Systems Model

complicated

Big Problem:  Where do we get functions from?
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Sources of Functions for Sources of Functions for 
Complex Systems Models Complex Systems Models 

Physics:  Functions come from theory

Biology: No theory available 

Solution 1: Educated guesses: growth functions

Solution 2: “Partial” theory:  Enzyme kinetics

Solution 3: Generic approximation
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Why not Use Why not Use ““TrueTrue”” Functions?Functions?
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Why not Use Linear Functions?Why not Use Linear Functions?
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Example: Heartbeat modeled as stable limit cycle

System of linear 
differential equations
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System of non-linear 
differential equations
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Formulation of a Nonlinear ModelFormulation of a Nonlinear Model
for Complex Systemsfor Complex Systems

Challenge:

Linear approximation unsuited

Infinitely many nonlinear functions

Solution with Potential:

Savageau (1969): Approximate Vi
+ and Vi

– in a 

logarithmic coordinate system, using Taylor theory.

Result: Canonical Modeling; Biochemical Systems Theory.
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ExampleExample

Adenine Excretion as a Function
of Plasma Adenine Concentration
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Important:
Each term contains exactly those variables that have a 
direct effect; others have exponents of 0 and drop out.

Result: SResult: S--systemsystem

Each term is represented as a product of power-functions.

Each term contains and only those variables that have a 
direct effect; others have exponents of 0 and drop out.

α’s and β’s are rate constants, g’s and h’s kinetic orders.
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Alternative FormulationsAlternative Formulations
Within BSTWithin BST



18

mniiimniii h
mn

hh
i

g
mn

gg
ii XXXXXXX ++

++ β−α= ,21,21  ... ... 2121
&

S-system Form:
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Generalized Mass Action Form:
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Alternative FormulationsAlternative Formulations
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Example of Canonical Model DesignExample of Canonical Model Design
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Example of Canonical Model DesignExample of Canonical Model Design
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Sphingolipid pathway
(purely metabolic)

1. Many metabolites

2. Many reactions

3. Many stimuli and agents 
regulate several enzymes 
of lipid metabolism 

4. Some in vivo experiments

Doable SizeDoable Size

Alvarez, Sims, Hannun, Voit
JTB, 2004; Nature, 2005
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Pathways: purines, glycolysis, citric acid, TCA, red blood cell,
trehalose, sphingolipids, ...

Genes: circuitry, regulation,…

Genome:  explain expression patterns upon stimulus

Growth, immunology, pharmaceutical science, forestry, ...

Metabolic engineering:  optimize yield in microbial pathways

Dynamic labeling analyses possible

Math:  recasting, function classification, bifurcation analysis,...

Statistics:  S-system representation, S-distribution, trends;
applied to seafood safety, marine mammals, health economics

ApplicationsApplications
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Advantages of Canonical ModelsAdvantages of Canonical Models

Prescribed model design: Rules for translating diagrams into 
equations; rules can be automated

Direct interpretability of parameters and other features

One-to-one relationship between parameters and model structure 
simplifies parameter estimation and model identification

Simplified steady-state computations (for S-systems), including
steady-state equations, stability, sensitivities, gains

Simplified optimization under steady-state conditions

Efficient numerical solutions and time-dependent sensitivities

In some sense minimal bias of model choice and minimal model size; 
easy scalability
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Vi =Ri (Si , Mi )

p1 , p2 , p3 , …

= fk (Xj , Vi )
dXj
dt

Flow Chart of Flow Chart of 
Systems Identification StrategySystems Identification Strategy

Voit, Drug Discovery Today, 2004
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• Lots of time-consuming work and effort!
• Very many a priori assumptions
• What’s important, what isn’t?
• Topology
• Regulation
• Functional forms
• Seldom consistent experiments 
• Mixing and matching of organisms, strains, conditions
• Paucity of data for comparisons with documented 

responses
• Iterative nature of process time consuming

Problems with Traditional Problems with Traditional 
System Identification StrategySystem Identification Strategy
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• Use information at the “global” level (in vivo time series data) 
to deduce (per model) structure and regulation at the “local” 
level (connectivity, signals,…)

Alternative to Traditional Modeling:Alternative to Traditional Modeling:
TopTop--Down ModelingDown Modeling
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Inverse Problems: Sandbox ExampleInverse Problems: Sandbox Example
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∏∏ −= hg XXX βα&

∏∏ −= '' '' hg YYY βα&
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BST

TopTop--Down Down ““InverseInverse”” ModelingModeling
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Key Step: ParameterKey Step: Parameter
Estimation from Time Series DataEstimation from Time Series Data

o According to computer scientists:  trivial, solved.
o Many methods
o Most work sometimes
o None works always
o Estimation remains to be a frustrating topic!
o Example:  Kikuchi et al. 2003
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Recent Methods for Parameter Recent Methods for Parameter 
Estimation in BST: Estimation in BST: 

~ 100 papers; no method really good~ 100 papers; no method really good

FluxFlux--BasedBased
EstimationEstimation
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Challenges of Inverse ModelingChallenges of Inverse Modeling
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Challenges of Inverse ModelingChallenges of Inverse Modeling
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Challenges of Inverse ModelingChallenges of Inverse Modeling

Overly noisy data
Missing data points 
Uncertainties about the 
measurements
Non-informative
Ill-posed data matrix
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Challenges of Inverse ModelingChallenges of Inverse Modeling

Overly noisy data
Missing data points 
Uncertainties about the 
measurements
Non-informative
Ill-posed data matrix

Model selection criteria: 
Data dynamics capture ability, 
mathematical simplicity,

Infinite variety of 
formulations 

tractability, results 
interpretability
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Challenges of Inverse ModelingChallenges of Inverse Modeling

Overly noisy data
Missing data points 
Uncertainties about the 
measurements
Non-informative
Ill-posed data matrix

Model selection criteria: 
Data dynamics capture ability, 
mathematical simplicity,

Infinite variety of 
formulations 

Lacking convergence or
convergence to local minima
Time consuming for integration of
differential equations

Computational capacity
Slow convergence

tractability, results 
interpretability
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Challenges of Inverse ModelingChallenges of Inverse Modeling

Overly noisy data
Missing data points 

Lacking convergence or
convergence to local minima
Time consuming for integration of
differential equations

Distinctly different yet
equivalent solutions

Non-equivalent solutions
with similar error

Uncertainties about the 
measurements
Non-informative
Ill-posed data matrix

Error compensation

Computational capacity
Slow convergence

Model selection criteria: 
Data dynamics capture ability, 
mathematical simplicity,

Infinite variety of 
formulations 

tractability, results 
interpretability
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Old Trick:  Slope EstimationOld Trick:  Slope Estimation
(at least as old as Voit & (at least as old as Voit & SavageauSavageau, 1982), 1982)

))((  )( ktk tXfXtS
k
=≈ &

:

),...,);(),....,(),(()(
:

121 iiMijnjjiji pptXtXtXftS ≈

iniiinii h
n

hh
i

g
n

gg
ii XXXXXXf ...... 2121

2121 βα −≈

k
h
n

hh
i

g
n

gg
ii tatXXXXXXS iniiinii ...... 2121

2121 βα −≈

S-System:



38

Toward a New TrickToward a New Trick
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New Trick:  Alternating RegressionNew Trick:  Alternating Regression
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Alternating Regression (contAlternating Regression (cont’’d)d)
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Merge the numerical value of the α-term 
with Si and compute βi and hij per 
linear regression for all time points.

Iterate between α - and β - terms until 
convergence

^ ^
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Alternating Regression (contAlternating Regression (cont’’d)d)

Results:
Extremely fast, if it converges.
Convergence issue very complex.
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Problems with Traditional MethodsProblems with Traditional Methods

Time to (global) convergence

Problems with collinear data

Problems with models permitting redundancies

Problems with compensation of error among terms
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Problems with Traditional Methods:Problems with Traditional Methods:
ExtrapolationExtrapolation
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Example: Regulation of Glycolysis inExample: Regulation of Glycolysis in
Lactococcus lactisLactococcus lactis

www.hhmi.org/bulletin/winter2005/images/bacteria5.jpg

Bacterium involved in dairy, wine, bread, pickle production.
Relatively simple organization.  Here: study glucose regulation.

Bacteria found in yogurt and cheese:
Lactococcus lactis (top),
Lactobacillus bulgaricus (blue), 
Streptococcus thermophilus (orange), 
Bifidobacterium spec (magenta). 
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Goals of ModelingGoals of Modeling

• Understand pathway; design, operation

• Allow extrapolation to new situations

• Allow prediction for manipulation

• Maximize yield of main product

• Optimize yield of secondary products

• Eventually develop a cell-wide model 
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Experimental Time Series DataExperimental Time Series Data

E.O. Voit, J.S. Almeida, S. Marino, R. Lall, G. Goel, A.R. Neves, and H. Santos:  IEE Proc. Systems Biol. 2006
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Other InformationOther Information
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LactococcusLactococcus DataData

Had modeled these data before

First, difficult to find any solutions

Combination of methods led to good fit

Later, many rather different solutions

Question: Is any of these solutions optimal?

Question: Is the BST model appropriate?

Problems with extrapolation
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)

Inspired by Stoichiometric and Flux Balance Analysis

Extended to dynamic time courses

Study flux balance at each time point

Change in variable @ t = all influxes @ t – all effluxes @ t

Linear system; solve as far as possible

Result: values of each flux @ t

Represent fluxes with appropriate models

G. Goel et al., Bioinformatics 2008
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)Dynamic Flux Estimation (DFE)
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Open ProblemsOpen Problems

Smoothing and Mass conservation:
Noise in the data leads to loss or gain of mass

Underdetermined Flux Systems:
Linear system of flux often not of full rank
Augment DFE with other methods 

(e.g., AR or bottom-up estimation)

Characterization of Redundancies:
Data collinear or non-informative (pooling?)
Model allows transformation groups (Lie analysis?)
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Overriding ChallengeOverriding Challenge

Speed and Convenience

Algorithms for parameter estimation
from time series must become
much faster and more robust

They must run reliably and “semi-foolproof”
on ordinary PC’s without the need
of expensive software
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WorkflowWorkflow
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SummarySummary

Efficiently dealing with inverse problems 
presents new modeling opportunities:

1. Time series data are coming!  They contain a lot of 
implicit information that must be extracted.

2. Technical challenges abound.  Important:  Efficient, 
robust, and fast solutions on PC’s needed.

3. Important overlooked issue: Error compensation; 
extrapolation becomes unreliable. DFE promising
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Further InformationFurther Information

www.bst.bme.gatech.edu
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