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Overview I

Systems Biology and Optimization

Choice of a Suitable Model

Bottom-up and Top-down Model Estimation
Technical Issues

Dynamic Flux Estimation

Open Problems
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Application: Pathway Modeling

“Local” Data
Literature, Brenda,
de novo Experiments

(Enzyme Kinetics) Understanding

=s=» EXtrapolation

\ Local Processes mm)p

=) Manipulation

Internet, (93 p
de novo Experiments . NE Model
(Microarrays, Structure
Proteomics,
Mass Spec, NMR, I

Time Series Literature, KEGG, de novo Experiments
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Formulation of a
Dynamical Systems Model

LN

=Vi' =V

dt

Vo=V (X, X, X, X Xoim) complicated

1A n+1tt “ i nem

- /) - /)
~ ~

iInside outside

Big Problem: Where do we get functions from?




Sources of Functions for
Complex Systems Models

Physics: Functions come from theory

Biology: No theory available
Solution 1: Educated guesses: growth functions
Solution 2: “Partial” theory: Enzyme Kinetics

Solution 3: Generic approximation




Why not Use “True” Functions?

num.1l num.1 num 2
(coef.ABj(A)(B) (coef AB num. J( Q)
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from Schultz (1994)
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Why not Use Linear Functions? I

Example: Heartbeat modeled as stable limit cycle

sin(t)

1

vdP(t)

T =

System of linear
differential equations

System of non-linear
differential equations

12




Formulation of a Nonlinear Model
for Complex Systems

Challenge:
Linear approximation unsuited

Infinitely many nonlinear functions

dX;
dt
Savageau (1969): Approximate V,* and V" in a

Solution with Potential: Xi = :Vi+ -V

logarithmic coordinate system, using Taylor theory.

Result: Canonical Modeling; Biochemical Systems Theory.




Example

Adenine Excretion as a Function
of Plasma Adenine Concentration

Excretion of
Adenine Metabolites

Concentration

80

and Log of Concentration of Plasma Adenine
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Result: S-system I

X = o X8 X Jiz X Simm _ g x My iz oy M

n+m “* Xn+m

Each term is represented as a product of power-functions.

Each term contains and only those variables that have a
direct effect; others have exponents of O and drop out.

a’s and [’s are rate constants, g’s and h’s kinetic orders.

Important:
Each term contains exactly those variables that have a
direct effect; others have exponents of O and drop out.




Mapping
Structure @& Parameters




Alternative Formulations
Within BST

S-system Form:

Xiz@xlgilngizluxgi,mm Bixlhilxzhiz_ Xhi,n+m

n+m “* Xn+m




Alternative Formulations I

S-system Form:

Xi =, XlgilngiZ X Ji,n+m _Bi th”XQ‘Z. X hj n+m

n+m “* Xn+m

Generalized Mass A9tri/ Form:




Example of Canonical Model Design I

—
Xz_’ng

Q

X g X ;
P

GMA/S: Xz _ 8X10'75 —5X20‘3
GMA /S: X3:5X20'3—5X§'5Xf'2
GMA/S: X, =12X°X,* —4X}?
GMA/S: Xo = 1.1 (constant)

GMA: Xl :20)(0)(3—0-9 __8X10-75_12X10.5X4—1
S-System: Xl = 20)(0 X3—0-9 "19X10'64X;0'45




Example of Canonical Model Design I

/D% —®>
Xoe_p Xl/ /
B —

GMA: X, =20X X;%9 —8X 27 12X 2°X 2 X1(to) = 0.8
S-system: X, = 20X, X270 —19X % X % X1 (to) = 0.8

10 ¢ 10 +
GMA system S-system
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Applications I

Pathways: purines, glycolysis, citric acid, TCA, red blood cell,
trehalose, sphingolipids, ...

Genes: circuitry, regulation,...

Genome: explain expression patterns upon stimulus

Growth, immunology, pharmaceutical science, forestry, ...
Metabolic engineering: optimize yield in microbial pathways
Dynamic labeling analyses possible

Math: recasting, function classification, bifurcation analysis,...

Statistics: S-system representation, S-distribution, trends;
applied to seafood safety, marine mammals, health economigs




Advantages of Canonical Models

Prescribed model design: Rules for translating diagrams into
equations; rules can be automated

Direct interpretability of parameters and other features

One-to-one relationship between parameters and model structure
simplifies parameter estimation and model identification

Simplified steady-state computations (for S-systems), including
steady-state equations, stability, sensitivities, gains

Simplified optimization under steady-state conditions
Efficient numerical solutions and time-dependent sensitivities
In some sense minimal bias of model choice and minimal model size;

easy scalability
23




Flow Chart of
Systems ldentification Strategy

C 1) 1)l
) 1) O

Voit, Drug Discovery Today, 2004



Problems with Traditional
System ldentification Strategy

Lots of time-consuming work and effort!
Very many a priori assumptions
What’s important, what isn’t?
Topology
Regulation
Functional forms
Seldom consistent experiments
Mixing and matching of organisms, strains, conditions

Paucity of data for comparisons with documented
responses

Iterative nature of process time consuming




Alternative to Traditional Modeling:
Top-Down Modeling

« Use information at the “global” level (in vivo time series data)

to deduce (per model) structure and regulation at the “local”
level (connectivity, signals,...)




Inverse Problems: Sandbox Example I

concentration

Y < s
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Top-Down “Inverse” Modeling I




Key Step: Parameter
Estimation from Time Series Data

According to computer scientists: trivial, solved.
Many methods

Most work sometimes

None works always

Estimation remains to be a frustrating topic!
Example: Kikuchi et al. 2003




Recent Methods for Parameter
Estimation in BST:
— 100 papers; no method really good

Substitution of slopes Interval methods
for differentials and X Constraint propagation
7“" Newton flow méthod .

\| Global _ - p )
branch-and-Boung R, 4 Collocation and
methods ¢ \ D2 NN oy hyb[{d evolution

) b U 3

. 7 RSN s
Eigenvéctor™{. \_“A_.  Nonlinear
optimizatjon , N regress:on

| . N4
\7 ) A Simulated An-neg.-'m_g
J Neural Network { .~ ¢ | Ant colony optimization
& Genetic algorithms *‘\ " ( ¥ ¢ Swarm methods
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Challenges of Inverse Modeling I

IVEEE
Modeling




Challenges of Inverse Modeling I

IVEEE
Modeling




Challenges of Inverse Modeling

Overly noisy data
Missing data points
Uncertainties about the

measurements __
Non-informative y o
lll-posed data matrix / Related

Issues

Inverse

Modeling



Challenges of Inverse Modeling

Overly noisy data
Missing data points

Uncertainties about the
measurements

Non-informative
[1l-posed data matrix

Data

Related
Issues

Inverse
Modeling

Model selection criteria:
Data dynamics capture ability,
mathematical simplicity,
tractability, results
interpretability

Infinite variety of
formulations

Model
Related
Issues




Challenges of Inverse Modeling

Overly noisy data Model selection criteria:

. . Data dynamics capture ability,
Missing data points mathematical simplicity,
Uncertainties about the tractability, results
measyrements_ _ interpretability
Non-informative | Data Model Infinite variety of
I11-posed data matrix Related — Related formulations

Issues Issues

Inverse

Modeling

Computational capacity’ computational
Slow convergence o Issues

Lacking convergence or
convergence to local minima

Time consuming for integration of
differential equations




Challenges of Inverse Modeling

Overly noisy data
Missing data points

Uncertainties about the
measurements

Non-informative Dt

[1l-posed data matrix Related
Issues

Inverse
Modeling

Computational capacity’ computational
Slow convergence QU Issues

Lacking convergence or
convergence to local minima

Time consuming for integration of
differential equations

Model selection criteria:
Data dynamics capture ability,
mathematical simplicity,
tractability, results
interpretability

Model Infinite variety of

Related formulations
Issues

¢ Distinctly different yet
equivalent solutions

+ Non-equivalent solutions
with similar error

¢ Error compensation




Old Trick: Slope Estimation
(at least as old as Voit & Savageau, 1982)

S(tk) ~ X | = F(X(t))

Si(tj) = T (Xe(tj), Xo(tj)sess Xy (t); Pitse- Pim, )

S-System: fi = ¢ XlgilxgJi2 X B th”XS‘2 ...er]'i”

S, ma XX P2 X% — g XXl XM at t,




Toward a New Trick I

S, mo XJuXJz X9 — g XXl XMW at ot

| P11

estimated

measured
from data

7
~" ~"

Terms become
Numbers

mmmmp Guess 4 and h;




New Trick: Alternating Regression I

S, mo XJuXJz X9 — g XXl XMW at ot

S, — B XXl XM =g XIt X2 X% at t

Number = o, X2 X 2. X" at t,

log(Number) =log(e;) + > g; log(X;)  for all t,

Linear regression yields ¢; and g;;




Alternating Regression (cont’d) I

S, mo XJuXJz X9 — g XXl XMW at ot

/\ /\
Use ¢; and g; and compute “a-term”

Merge the numerical value of the a/—\term
with S; and compute ﬁi\and h;; per
linear regression for all time points.

Iterate between «- and g - terms until
convergence




Alternating Regression (cont’d) I

Results:
Extremely fast, if it converges.
Convergence issue very complex.

A

(a)

B 50 200
40
150
30 i
20 14100
10
iso
0,
-2 0 2 4
h
(b)
4




Problems with Traditional Methods I

Time to (global) convergence
Problems with collinear data

Problems with models permitting redundancies

Problems with compensation of error among terms




Former model;
here using GMA form

Problems with Traditional Methods:
Extrapolation

4 time 8
Bad parameters, but good fits

because of error compensation

time

Problem with the “misestimated”
system during extrapolation




Example: Regulation of Glycolysis In
Lactococcus lactis

Bacteria found in yogurt and cheese:
Lactococcus lactis (top),

Lactobacillus bulgaricus (blue),
Streptococcus thermophilus (orange),
Bifidobacterium spec (magenta).

www.hhmi.org/bulletin/winter2005/images/bacteria5.jpg

Bacterium involved in dairy, wine, bread, pickle production.
Relatively simple organization. Here: study glucose regulation.

44




Goals of Modeling I

e Understand pathway; design, operation
» Allow extrapolation to new situations

e Allow prediction for manipulation

e Maximize yield of main product

e Optimize yield of secondary products

e Eventually develop a cell-wide model




Experimental Time Series Data
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Other Information

Extemal Glucose
(X))

PEP
(%)

atp _ GBP (%)
ADP
FBP (X))

2 NAD* 2 ADP
+ 2P,
2 NADH 2ATP
2 (3-PGA) (X,)

Acetyl-CoA,
Acetolactate

2 Lactate ﬁ 2 Pyruvate ——p
X3 (Xe)
2 NAD* 2 NADH

Extemal Glucose

FBP (X;)
2 NAD* 2 ADP
+ 2P,
2 NADH 2ATP
2 (3-PGA) (X))

«—— 2 PEP (X;)
2 ADP

2 ATP

2 Lactate ﬁ 2 Pyruvate ——p
(X3) (X5)
2 NAD® 2 NADH

Acetyl-CoA,
Acetolactate




| actococcus Data I

Had modeled these data before
First, difficult to find any solutions
Combination of methods led to good fit

Later, many rather different solutions

Question: Is any of these solutions optimal?

Question: Is the BST model appropriate?

Problems with extrapolation




Dynamic Flux Estimation (DFE) I

Inspired by Stoichiometric and Flux Balance Analysis
Extended to dynamic time courses

Study flux balance at each time point

Change in variable @ t = all influxes @ t — all effluxes @ t

Linear system; solve as far as possible
Result: values of each flux @ t

Represent fluxes with appropriate models

G. Goel et al., Bioinformatics 2008




Dynamic Flux Estimation (DFE)

( Model Free Estimation )

Optimizing and Linear \
Smoothing Algebra
Time || Numerlcal “ System of IIL Dynamic
Series Data Slopes Fluxes Flux Profiles
I

System
Topology

— Functional
Assumptions

Parameterized Numerical Symbolic

s Flux
Kinetic Model Flux :
Representation Representation

Parameter
Estimation

( Model Based Estimation )




Dynamic Flux Estimation (DFE)

Dynamic Metabolite Profiles

d

(@)
B
2

Glucose — Glucose —PEP — Acetate
= Primary pathway —FBP —3PGA —Lactate
==p-Enzyme activation
== Enzyme inhibition
nige Secondary pathway

T
en
(=]

I
(=]

e
(5]

-
=]

FBP, 3PGA, Lactate (mM)

Glucose, PEP, Acetate (mM)

[4,]

Vg
saakan e Glycerate

25 30 35 40
Time {mins)

p, Aspartate Dynamic Flux Profiles
(LT LLLLLL Malata
‘.-"’ Succinate

.
‘.o‘ VIQ

vy Vs ' *"':g z
Lactate W Pyruvate v Acetate
. 7

‘0

ONAD~ R
OnADH o

o ADP

o ATP

P

=)
]

=]
-
(53]

"
-.f:s

" Unknown
Compound

=)
-

Flux: w2, vd, vé (mmolimin}

ELRRRERERER]]
Flux: w1, v3, v, vT {mmol/min)

Acetoin
2, 3-Butanadiol

Time {mins)




Dynamic Flux Estimation (DFE)

Dynamic Metabolite Profiles
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Dynamic Flux Estimation (DFE)

Experimental vs Modeled Glucose Dynamic Metabolite Profiles
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Dynamic Flux Estimation (DFE)

( Model Free Estimation )

Optimizing and Linear \
Smoothing Algebra
Time || Numerlcal “ System of IIL Dynamic
Series Data Slopes Fluxes Flux Profiles
I

System
Topology

— Functional
Assumptions

Parameterized Numerical Symbolic

s Flux
Kinetic Model Flux :
Representation Representation

Parameter
Estimation

( Model Based Estimation )




Open Problems I

Smoothing and Mass conservation:
Noise in the data leads to loss or gain of mass

Underdetermined Flux Systems:
Linear system of flux often not of full rank
Augment DFE with other methods
(e.g., AR or bottom-up estimation)

Characterization of Redundancies:
Data collinear or non-informative (pooling?)
Model allows transformation groups (Lie analysis?)




Overriding Challenge I

Speed and Convenience

Algorithms for parameter estimation
from time series must become
much faster and more robust

They must run reliably and “semi-foolproof”
on ordinary PC’s without the need
of expensive software
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Summary I

Efficiently dealing with inverse problems
presents new modeling opportunities:

. Time series data are coming! They contain a lot of
implicit information that must be extracted.

. Technical challenges abound. Important: Efficient,
robust, and fast solutions on PC’s needed.

. Important overlooked issue: Error compensation;
extrapolation becomes unreliable. DFE promising
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