

Time-series-based Ensemble Modeling for Bio-Medical Applications

Maciej Ogorzałek 1,2

in collaboration with:

Christian Merkwirth, Grzegorz Surowka, Leszek Nowak, Katarzyna Grzesiak-Kopec 1 Joerg Wichard 3

¹Department of Information Technologies, Jagiellonian University, Kraków
 ² Chair of Bio-signals and Systems, Hong Kong Polytechnic University (under DSS)
 ³FMP Berlin, Germany

Learning a Dependency from Data

Given: A sample of input-output-pairs (\vec{x}^{μ}, y^{μ}) with $\mu = 1, ..., N$ A functional dependence $y(\vec{x})$ (maybe corrupted by noise)

Aim: Choosing a model (function) \hat{f} out of hypothesis space \mathcal{H} close to true dependency f as possible

Classification	$f: \mathbf{R}^D \mapsto \{0, 1, 2,\}$ discrete classes
Regression	$f: \mathbf{R}^D \mapsto \mathbf{R}$ continuous output

Implementation usually via solution of an appropriate optimization problem:

- Matrix inversion in case of linear regression
- Minimization of a loss function on the training data
- Quadratic programming problem for SVMs

Validation and Model Selection

- Generalization error: How does the model perform on unseen data (samples) ?
- Exact generalization error is not accessible since we have only limited number of observations !
- Training on small data set tends to overfit, causing generalization error to be significantly higher than training error
- Consequence of mismatch between the capacity of the hypothesis space H (VC (Vapnik-Cervonenkis)-Dimension) and the number of training observations
- Validation: Estimating the generalization error using just the given data set
 - Needed for choosing optimal model structure or learning parameters (step sizes etc.)
- Model Selection: Selecting the model with lowest (estimated) generalization error
- But estimation of generalization error is very unreliable on small data sets

Improving Generalization for Single Models

- Remedies:
 - Manipulating training algorithm (e.g. early stopping)
 - Regularization by adding a penalty to the loss function
 - Using algorithms with built-in capacity control (e.g. SVM)
 - Rely on criteria like BIC (Bayesian Information Criteria), AIC (Akaike), GCV (Generalized Cross-Validation) or Cross Validation to select optimal model complexity
 - Reformulate the loss function :
 - ϵ -insensitive loss
 - Huber loss
 - SVM loss for classification

Are there any other methods to improve generalization error ?

- Are there any other methods to improve generalization error ?
- Yes, by combining several individual models!

Ensemble: Averaging the output of several separately trained models

- Simple average
 - $\bar{f}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} f_k(\vec{x})$
- Weighted average $\bar{f}(\vec{x}) = \sum_k w_k f_k(\vec{x})$ with $\sum_k w_k = 1$

Ensemble: Averaging the output of several separately trained models

- Simple average
 - $\bar{f}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} f_k(\vec{x})$
- Weighted average $\bar{f}(\vec{x}) = \sum_k w_k f_k(\vec{x})$ with $\sum_k w_k = 1$

Ensemble: Averaging the output of several separately trained models

- Simple average
 - $\bar{f}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} f_k(\vec{x})$
- Weighted average $\bar{f}(\vec{x}) = \sum_k w_k f_k(\vec{x})$ with $\sum_k w_k = 1$

Ensemble: Averaging the output of several Error decomposition: separately trained models

- Simple average
 - $\bar{f}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} f_k(\vec{x})$
- Weighted average $\bar{f}(\vec{x}) = \sum_k w_k f_k(\vec{x})$ with $\sum_k w_k = 1$

$$e(\vec{x}) = (y(\vec{x}) - \bar{f}(\vec{x}))^{2}$$

$$\bar{\epsilon}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} (y(\vec{x}) - f_{k}(\vec{x}))^{2}$$

$$\bar{a}(\vec{x}) = \frac{1}{K} \sum_{k=1}^{K} (f_k(\vec{x}) - \bar{f}(\vec{x}))^2$$

$$e(\vec{x}) = \bar{\epsilon}(\vec{x}) - \bar{a}(\vec{x})$$

Interpretation:

- The ensemble generalization error is always smaller than the expected error of the individual models
- An ensemble should consist of well trained but diverse models
- An ensemble often outperforms the best constituting model

Integrating over input space:

$$\mathbf{E} = ar{\mathbf{E}} - ar{\mathbf{A}}$$

$\mathbf{E}=\mathbf{\bar{E}}-\mathbf{\bar{A}}$

How can we obtain models that have low generalization error (small \overline{E}), but are mutually uncorrelated (large \overline{A})?

- Varying model structure (e.g. topology)
- Exploiting the disadvantage of getting stuck in local minima:
 - Varying initial conditions
 - Varying parameters of the training procedure
 - Using ϵ -insensitive loss function
- Train a large population of models
- Applying resampling or sequencing techniques:

$\mathbf{E}=\mathbf{\bar{E}}-\mathbf{\bar{A}}$

How can we obtain models that have low generalization error (small \overline{E}), but are mutually uncorrelated (large \overline{A})?

- Varying model structure (e.g. topology)
- Exploiting the disadvantage of getting stuck in local minima:
 - Varying initial conditions
 - Varying parameters of the training procedure
 - Using ϵ -insensitive loss function
- Train a large population of models
- Applying resampling or sequencing techniques:

- Resampling: Generating new data sets by omitting or duplicating samples of the original data set. These techniques can be used to estimate generalization errors and for model construction
 - Bootstraping Generate bootstrap replicates by randomly drawing samples from training set
 - Cross-Validation Divide data set repeatedly in training and test part
 - Bumping Construct models on bootstrap replicates and choose best model on full data set
 - Bagging Bootstrap aggregation, create several models on bootstrap replicates and average these
 - Boosting Create sequence of models where training of next model depends on output of previous model

Crosstraining – Constructing Ensembles

- Finesse: Efficiently reuse samples by combining training, validation and selection of models
- Additional benefit of reduced correlation between models
- Repeatedly partition data set randomly into two sample classes
 - Training set, used for training and stopping criteria
 - Test set, used only for accessing generalization error after model has been trained

Crosstraining – Constructing Ensembles

- Finesse: Efficiently reuse samples by combining training, validation and selection of models
- Additional benefit of reduced correlation between models
- Repeatedly partition data set randomly into two sample classes
 - Training set, used for training and stopping criteria
 - Test set, used only for accessing generalization error after model has been trained

- Train population of (heterogenous) models, select best ones according to error on test set
- Repartition data set, taking care that test sets are mutually disjunct
- Combine best models of all partitionings to ensemble
- Optionally weight models according to the estimated generalization error on the total data set

Ensemble Methods

- Advantages
 - Straightforward extension of existing modeling algorithms
 - Almost fool-proof minimization of generalization error
 - Makes no assumptions on the structure of the underlying models
 - Simplifies the problem of model selection
- Disadvantages
 - Increased computational effort
 - Interpretation of ensemble is even harder than drawing conclusions from a single model

Pros and Cons of Ensembles

Ensemble Methods

- Advantages
 - Straightforward extension of existing modeling algorithms
 - Almost fool-proof minimization of generalization error
 - Makes no assumptions on the structure of the underlying models
 - Simplifies the problem of model selection
- Disadvantages
 - Increased computational effort
 - Interpretation of ensemble is even harder than drawing conclusions from a single model

Combining Heterogenous Models

- Advantages
 - Often one model type performs superior on the given data set
 - Probability of using an unsuited model type decreases
 - Inherent decorrelation even without manipulating data set or training parameters
- Disadvantages
 - Accessing the generalization performance of heterogenous models is even more difficult than for models of same type

The ENTOOL Toolbox for Statistical Learning

EX)

- The ENTOOL toolbox for statistical learning is designed to make state-of-the-art machine learning algorithms available under a common interface
- Allows construction of single models or ensembles of (heterogenous) models
- Supports decorrelation of models by offering resampling techniques
- Though primarily designed for regression, it is possible to construct ensembles of classifiers with EN-TOOL

The ENTOOL Toolbox for Statistical Learning

- The ENTOOL toolbox for statistical learning is designed to make state-of-the-art machine learning algorithms available under a common interface
- Allows construction of single models or ensembles of (heterogenous) models
- Supports decorrelation of models by offering resampling techniques
- Though primarily designed for regression, it is possible to construct ensembles of classifiers with EN-TOOL

- Requirements:
 - Matlab (TM)
- Operating systems:
 - Windows
 - Linux
 - Solaris (limited)

ENTOOL Software Architecture

- Each model type is implemented as separate class
- All model classes share common interface
- Exchange model types by exchanging constructor call
- Automatic generation of ensembles of models
- Models are divided into two brands:
 - Primary models like linear models, neural networks, SVMs etc.
 - 2. Secondary models that rely on primary models to calculate output. All ensemble models are secondary models.

ENTOOL Software Architecture

- Each model type is implemented as separate class
- All model classes share common interface
- Exchange model types by exchanging constructor call
- Automatic generation of ensembles of models
- Models are divided into two brands:
 - Primary models like linear models, neural networks, SVMs etc.
 - 2. Secondary models that rely on primary models to calculate output. All ensemble models are secondary models.

- Lifecycle of a model can be divided into three phases:
 - During construction, topology of the model is specified. The model can't be used yet.
 - 2. Model has now to be trained on some training data set (\vec{x}_i, y_i)
 - 3. After training, the model can be evaluated on new/unseen inputs (\vec{x}_n)
- Constructors should assign random default topologies in order to create uncorrelated models
- It is possible to construct ensembles

Syntax

• Constructor syntax:

model = perceptron; creates a MLP model with default topology

- model = perceptron(12); MLP model with 12 hidden layer neurons
- model = ridge; creates a linear model by ridge regression

• Constructor syntax:

model = perceptron; creates a MLP model with default topology
model = perceptron(12); MLP model with 12 hidden layer neurons
model = ridge; creates a linear model by ridge regression

• Training syntax:

model = train(model, x, y, [], [], 0.05); trains model with ϵ -insensitive loss of 0.05 on data set (\vec{x}_i, y_i)

Syntax

• Constructor syntax:

model = perceptron; creates a MLP model with default topology
model = perceptron(12); MLP model with 12 hidden layer neurons
model = ridge; creates a linear model by ridge regression

• Training syntax:

```
model = train(model, x, y, [], [], 0.05);
trains model with \epsilon-insensitive loss of 0.05 on data set (\vec{x}_i, y_i)
```

• Evaluation syntax:

y_new = calc(model, x_new) evaluates the model on new inputs

Syntax

• Constructor syntax:

model = perceptron; creates a MLP model with default topology
model = perceptron(12); MLP model with 12 hidden layer neurons
model = ridge; creates a linear model by ridge regression

• Training syntax:

```
model = train(model, x, y, [], [], 0.05);
trains model with \epsilon-insensitive loss of 0.05 on data set (\vec{x}_i, y_i)
```

• Evaluation syntax:

y_new = calc(model, x_new) evaluates the model on new inputs

• How to build an ensemble of models:

ens = crosstrainensemble; will create an empty ensemble object ens = train(ens, x, y, [], [], 0.05); calls training routines for several primary models and joins them into ensemble object

• 5th argument when calling train specifies training parameters

- 5th argument when calling train specifies training parameters
- Except topology, often training parameters have to be specified:

```
tp = get(perceptron, 'trainparams')
error_loss_margin: 0.0100
decay: 0.0010
rounds: 500
mrate_init: 0.0100
max_weight: 10
mrate_grow: 1.2000
mrate_shrink: 0.5000
```


- 5th argument when calling train specifies training parameters
- Except topology, often training parameters have to be specified:

```
tp = get(perceptron, 'trainparams')
error_loss_margin: 0.0100
decay: 0.0010
rounds: 500
mrate_init: 0.0100
max_weight: 10
mrate_grow: 1.2000
mrate_shrink: 0.5000
```

• Assign new value: tp.decay = 0.05

- 5th argument when calling train specifies training parameters
- Except topology, often training parameters have to be specified:

```
tp = get(perceptron, 'trainparams')
error_loss_margin: 0.0100
decay: 0.0010
rounds: 500
mrate_init: 0.0100
max_weight: 10
mrate_grow: 1.2000
mrate_shrink: 0.5000
```

- Assign new value: tp.decay = 0.05
- And give training parameters while training:
 model = train(perceptron, x, y, [], tp, 0.05);

Specifying which Model Types to Ensemble

• Ensemble constructor will train several models on dataset:

```
tp = get(crosstrainensemble, 'trainparams')
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1
```

Specifying which Model Types to Ensemble


```
• Ensemble constructor will train several models on dataset:
```

```
tp = get(crosstrainensemble, 'trainparams')
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1
```

• Assign new value:

```
tp.modelclasses = { 'perceptron', [], { }; ...
{ 'lssvm', [], { 'function', 'RBF_kernel', 100, 2 } }
```

Specifying which Model Types to Ensemble


```
• Ensemble constructor will train several models on dataset:
```

```
tp = get(crosstrainensemble, 'trainparams')
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1
```

• Assign new value:

```
tp.modelclasses = { 'perceptron', [], {}; ...
{ 'lssvm', [], { 'function', 'RBF_kernel', 100, 2} }
```

• And give training parameters while training:

```
ens = train(crosstrainensemble, x, y, [], tp, 0.05);
```


ares Adaption of Friedman's MARS algorithm

- **ridge** Linear model based on ridge regression with implicit LOO cross-validation for selecting optimal ridge penalty
- perceptron Multilayer perceptron with iRPROP+ training
- perceptron2 Magnus Nørgaard's single layer perceptron, trained with Levenberg-Marquart
- prbfn Shimon Cohen's projection based radial basis function network
- rbf Mark Orr's radial basis function code
- vicinal k-nearest-neighbor regression with adaptive metric
- mpmr Thomas Strohmann's Mimimax Probability Machine Regression
- Issvm Johan Suykens' least-square SVM toolbox
- tree Adaption of Matlab's build-in regression/classification trees
- osusvm SVM code based on Chih-Jen Lin's libSVM
- vicinalclass k-nearest-neighbor classification

ensemble Virtual parent class for all ensemble classes

- crosstrainensemble Ensemble class that trains models according to crosstraining scheme. Creates ensembles of decorrelated models.
- **cvensemble** Ensemble class that trains models according to crossvalidation/out-of-training scheme. Can be used to access OOT error.

extendingsetensemble Boosting variant for regression.

- **subspaceensemble** Creates an ensemble of models where each single model is trained on a random subspace of the input data set.
- **optimalsvm** Wrapper that trains RBF osusvm/lssvm with optimal parameter settings (C and γ)

featureselector Does feature selection and trains model on selected subset

http://zti.if.uj.edu.pl/ merkwirth/entool.htm

Application Examples

- Applications using ENTOOL
 - Nonlinear Regression of Skin Permeability
 - Sequence Analysis
- Molecular Graph Networks
 - Classification on NCI Data Set
 - Regression on KDD Challenge Data
 - Skin Cancer diagnosis

Receiver Operating Characteristics

- Most basic task of the diagnostician is to separate abnormal subjects from normal subjects
- In many cases there is significant overlap in terms of the appearance of the image
 - Some abnormal patients are normal-looking
 - Some normal patients are abnormal-looking
2 x 2 decision matrix

	Actually Abnormal	Actually Normal
Diagnosed as	True Positive	False Positive
Abnormal	(TP)	(FP)
Diagnosed as	False Negative	True Negative
Normal	(FN)	(TN)

ROC curves (cont.)

- For a single threshold value and the population being studied, a single value for TP, TN, FP, and FN can be computed
- The sum TP + TN + FP + FN will be equal to the total number of normals and abnormals in the study population
- "True" diagnosis must be determined independently, based on biopsy confirmation, long-term patient follow-up, etc.

В

ROC curves (cont.)

- True-positive fraction (TPF) = TP/(TP + FN)
- False-positive fraction (FPF) = FP/(FP + TN)
- A ROC curve is a plot of the true-positive fraction versus the false-positive fraction. A single threshold value will produce a single point on the ROC curve
- In practice, 5 points are realized based on the confidence level of the observer (*definitely there, maybe there, uncertain, maybe not there,* and *definitely not there*)

Sensitivity and specificity

• Sensitivity is the fraction of abnormal cases that a decision maker actually calls abnormal:

Sensitivity =
$$\frac{TP}{TP+FN}$$

• Specificity is the fraction of normal cases that a decision maker actually calls normal: Specificity = $\frac{TN}{TN+FP}$

Interpretation

- An ROC curve is essentially a way of analyzing the SNR associated with a certain diagnostic task
- In addition to the inherent SNR of the imaging modality under investigation, different human observers have *internal noise*, which affects individual performance
- Different radiologists may have different ROC curves

Interpretation (cont.)

- Set A has almost complete overlap between abnormal and normal cases
 - The SNR is near zero; ROC curve A represents pure guessing in terms of the diagnosis
- As separation between normal and abnormal cases increases (sets B & C), the corresponding ROC curves approach the upper left corner
- Area under the ROC curve is a measure of detectability
 - For worst performance, $A_z = 0.5$
 - For best performance, $A_z = 1.0$

Sensitivity Analysis for Regression

- Motivation: Determine variable importance with respect to prediction accuracy
- Might help uncovering causal relationships of underlying process
- Problem: Ensemble of heterogenous (nonlinear) models is even more difficult to analyze than single models
- Idea: Combine surrogate data method with OOT calculation

Sensitivity Analysis for Regression

- Motivation: Determine variable importance with respect to prediction accuracy
- Might help uncovering causal relationships of underlying process
- Problem: Ensemble of heterogenous (nonlinear) models is even more difficult to analyze than single models
- Idea: Combine surrogate data method with OOT calculation

- To determine importance of n-th variable:
 - Create surrogate/replicate of the original input data set where values of n-th variable are permuted randomly to destroy information content
 - Calculate OOT output for surrogate data set
 - Compare errors of OOT output of surrogate and original data set
 - If OOT error increases significantly, the n-th variable is important!
 - Average importance over several surrogate data sets for same variable to smooth out noise

Sensitivity Analysis for Regression

- Motivation: Determine variable importance with respect to prediction accuracy
- Might help uncovering causal relationships of underlying process
- Problem: Ensemble of heterogenous (nonlinear) models is even more difficult to analyze than single models
- Idea: Combine surrogate data method with OOT calculation
- Retraining unnecessary, would mask importance of correlated inputs
- Uncovers linear and nonlinear relationships

- To determine importance of n-th variable:
 - Create surrogate/replicate of the original input data set where values of n-th variable are permuted randomly to destroy information content
 - Calculate OOT output for surrogate data set
 - Compare errors of OOT output of surrogate and original data set
 - If OOT error increases significantly, the n-th variable is important!
 - Average importance over several surrogate data sets for same variable to smooth out noise

Nonlinear Regression of Skin Permeability

- 93 compounds described by 131 descriptors
- Ensemble of linear ridge models and k-nearest neighbor models
- Identified 8 descriptors by sensitivity analysis: 'Mass' 'Log P (oct/wat)' 'Cosmo' 'weinerPol' 'logP(o/w)' 'SM 5.0R' 'TPSA' 'vol'
- Exhaustive check of all combinations of these descriptors leads to two final models:
 - 'Mass' 'logP(o/w)' 'Cosmo' with OOT error on training data set of 0.30 RMSE and on validation set of 0.31 RMSE
 - 'Mass' 'SM 5.0R' 'Log P (oct/wat)' with RMSE 0.28/0.28

Nonlinear Regression of Skin Permeability

- 93 compounds described by 131 descriptors
- Ensemble of linear ridge models and k-nearest neighbor models
- Identified 8 descriptors by sensitivity analysis: 'Mass' 'Log P (oct/wat)' 'Cosmo' 'weinerPol' 'logP(o/w)' 'SM 5.0R' 'TPSA' 'vol'
- Exhaustive check of all combinations of these descriptors leads to two final models:
 - 'Mass' 'logP(o/w)' 'Cosmo' with OOT error on training data set of 0.30 RMSE and on validation set of 0.31 RMSE
 - 'Mass' 'SM 5.0R' 'Log P (oct/wat)' with RMSE 0.28/0.28

Sensitivity Analysis for Sequence Analysis

- Motivation: Determine importance of amino acid positions with respect to genotype-phenotype prediction accuracy
- Same idea as the sensitivity analysis for regression, but:
 - decrease in AUC (area under curve in ROC plot) instead of increase of MSE
 - random permutation of amino acids for each position

Sensitivity Analysis for Sequence Analysis

- Motivation: Determine importance Application to HIV Receptor Interaction of amino acid positions with respect to genotype-phenotype prediction accuracy
- Same idea as the sensitivity analysis for regression, but:
 - decrease in AUC (area under curve in ROC plot) instead of increase of MSE
 - random permutation of amino acids for each position

- Data set of 355 samples with 63 AA positions
- Binary classification problem with 89 sequences that can use the CXCR4 receptor and 266 negatives
- Data set must be aligned first
- Ensemble of SVM, linear and k-NN classifiers
- Drawback: Quality of sensitivity analysis strongly depends on OOT prediction accuracy
- Pro: Method can be used universally for genotype-phenotype matching and other classification settings

Sequence Analysis cont.

- Reasonable prediction accuracy on original data
- OOT AUC of 0.91

Sequence Analysis cont.

- Reasonable prediction accuracy on original data
- OOT AUC of 0.91

 Only a few sequence positions seem to be relevant:

NCI Data Set

- DTP AIDS Antiviral Screen
- Total 42682 compounds (7 outtakes)
- Three classes:
 - 1. CA Confirmed active 423
 - 2. CM Confirmed moderate 1080 compounds
 - 3. CI Confirmed inactive compounds
- No information about targets
- Random partition into training set of 35000 compounds and test set of 7682 compounds
- Ensemble of networks trained with classification loss

NCI Data Set

- DTP AIDS Antiviral Screen
- Total 42682 compounds (7 outtakes)
- Three classes:
 - 1. CA Confirmed active 423
 - CM Confirmed moderate 1080 compounds
 - 3. CI Confirmed inactive compounds
- No information about targets
- Random partition into training set of 35000 compounds and test set of 7682 compounds
- Ensemble of networks trained with classification loss

 Multiple modes of activity possible

Results : Classification on NCI Data Set

Results : Classification on NCI Data Set

Results : Toxicity Prediction

- EPA Fathead Minow Acute Toxicity Data Set of 617 industrial organic chemicals
- Predicting experimental LC 50
- MGN with 8 feature nets of 2-9 layers
- 50 fold Cross-Validation with 10% test on 577 compounds

 $r^2 = 0.58$

Russom, C.L., S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond (1997) Predicting modes of action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environmental Toxicology and Chemistry 16(5), 948-967

Results : Toxicity Prediction

- EPA Fathead Minow Acute Toxicity Data Set of 617 industrial organic chemicals
- Predicting experimental LC 50
- MGN with 8 feature nets of 2-9 layers
- 50 fold Cross-Validation with 10% test on 577 compounds

 $r^2 = 0.58$

Russom, C.L., S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond (1997) Predicting modes of action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environmental Toxicology and Chemistry 16(5), 948-967

Results : Toxicity Prediction

- EPA Fathead Minow Acute Toxicity Data Set of 617 industrial organic chemicals
- Predicting experimental LC 50
- MGN with 8 feature nets of 2-9 layers
- 50 fold Cross-Validation with 10% test on 577 compounds

 $r^2 = 0.58$

Russom, C.L., S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond (1997) Predicting modes of action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environmental Toxicology and Chemistry 16(5), 948-967

• Predictive Toxicity remains difficult

Image differentiation

Dysplastic

Melanoma

Measurements

Geometry:

- Vertical and horizontal symmetry
- Color symmetry
- Heigth and width
- Area of the lesion against the size of the photograph
- Perimeter (langth of borders)

Statistical Measurements:

- Color distribution (white, black and grey-blue),
- Estimated area
- Estimated perimeter
- Average distribution of RGB components in the lesion
- Average distribution of color components (HSV, YIQ, YCbCr)
- Binary connetions of color components

TDS (**T**otal **D**ermoscopy **S**core) TDS = A * 1,3 + B * 0,1 + C * 0,5 + D * 0,5

ABCD evaluation	
Property	TDS
Asymmetry	x 1.3
Border	x 0.1
Color	x 0.5
Different structura	I x 0.5
components	
outcome	< 4.75 - benignant
	4.8 - 5.45 – suspected
	melanoma
	> 5.45 – probable melanoma

Test for all coefficients

							ROC
	No.	Coefficient		No	Coefficient	1	
1	21	Sum of bckgrnd color comp	24	9	White color (px)	nal	
2	33	Average Cr component	25	30	Average V	0.5	
3	39	Average V of background	26	42	Average comp. Cr bckgrnd	0.8-	
4	14	Average red	27	40	Average luminance bckgrnd		
5	15	Average green	28	7	Borders	0.7 -	-
6	38	Average S of background	29	32	Average comp. Cb	S S	
7	29	Average S	30	18	Average green in bckgrnd	;≩ 0.6-	-* -
8	16	Average blue	31	19	Average blue in bckgrnd	sod	
9	31	Average luminance	32	6	Width (px)	g 0.5-	
10	36	Average Q	33	28	Average H	E .	
11	45	Average Q of background	34	10	Black color (px)	_eU.4 -	- AUC -
12	4	Estimated size (px)	35	17	Average red in backgrnd	LL 0.2	(obszar pod wykresem)
13	34	Average Y	36	12	Grey-blue	0.5-	
14	13	symmmetry (%)	37	20	Sum of color components	0.2	
15	1	Area of the lesion (%)	38	25	Binary sum of GBR	0.2	
16	2	Area of the lesion (px)	39	41	Average Cb comp	0.1 -	-
17	11	Gray-blue (px)	40	8	backgrnd		
18	44	Average I of background	41	22	Estimated borderline		
19	3	Area of background (px)	42	24	Binary RGB composition	0	0 0.2 0.4 0.6 0.8 1
20	5	Height (px)	43	23	Binary GRB composition		Frac. false positives
21	35	Average I	44	27	Binary RBG composition		
22	37	Average H of background	45	26	Binary BGR composition		
23	43	Average Y of background					

Single coefficient test

6 coefficients

Test with 15 strongest coefficients

Test for whole data set

Test for 15 best coefficients

	No.	Coefficient
1	21	Sum of color comp of bckgrnd
2	14	Average red
3	15	Average green
4	13	symmetry (%)
5	16	Average blue
6	34	Average Y
7	38	Average S of background
8	43	Average Y of background
9	12	Grey-blue – black and white
10	36	Average Q
11	18	Average green of background
12	31	Average luminance
13	39	Average V of background
14	45	Average Q of background
15	30	Average V

Set of 17 coefficients (best results)

	No	Coefficient
1	21	Sum of color comp. of the background
2	14	Average red
3	15	Average green
4	13	symmetry (%)
5	16	Average blue
6	34	Average Y
7	38	Average S of the background
8	43	Average Y of the background
9	12	Grey-blue – black and white
10	36	Average Q
11	18	Average green of the background
12	31	Average luminance
13	39	Average V of the background
14	45	Average Q of the background
15	30	Average V
16	35	Average I
17	44	Average I of the background

Image verification

Dysplastic

Melanoma

Summary

- Ensemble methods for classification and regression
- ENTOOL Ensemble toolbox for Matlab
- State-of-the art machine learning techniques
- Variety of primary and secondary model types
- Out-of-Train technique for accessing generalization error
- Sensitivity Analysis for classification and regression
- Application to skin permeability
- Application to genotype-phenotype matching
Summary

- Ensemble methods for classification and regression
- ENTOOL Ensemble toolbox for Matlab
- State-of-the art machine learning techniques
- Variety of primary and secondary model types
- Out-of-Train technique for accessing generalization error
- Sensitivity Analysis for classification and regression
- Application to skin permeability
- Application to genotype-phenotype matching

- Applicable to data sets of any size
- Classification of active/inactive compounds NCI Antiviral Screen
- Toxicity prediction as regression problem

Literature

- Krogh, Vedelsby Neural Network Ensembles, Cross Validation and Active Learning Advances in Neural Information Processing Systems 7, MIT Press 1995
- Peronne, Cooper When networks disagree: Ensemble methods for neural networks Neural Networks for Speech and Image Processing, Chapman Hall 1993
- Hastie, Tibshirani, Friedman The Elements of Statistical Learning Springer 2001
- Vapnik The Nature of Statistical Learning Theory Springer 1999
- Chih-Chung Chang, Chih-Jen Lin LIBSVM : a library for support vector machines Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001
- Freund Short introduction to boosting 1999
- Sacks, Welch, Mitchell, Wynn Design and analysis of computer experiments Statistical Science, 4(4):409-435, 1989
- Domingos A unified bias-variance decomposition for zero-one and squared loss Proceedings of the Seventeenth National Conference on Artificial Intelligence, 2000
- Breiman Bagging Predictors . Machine Learning, 24, 1996