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Learning a Dependency from Data

Given: A sample of input-output-pairs (~xµ, yµ) with µ = 1, . . . , N

A functional dependence y(~x) (maybe corrupted by noise)

Aim: Choosing a model (function) f̂ out of hypothesis space H

close to true dependency f as possible

Classification f : RD 7→ {0, 1, 2, ...} discrete classes

Regression f : RD 7→ R continuous output

Implementation usually via solution of an appropriate optimization problem:

• Matrix inversion in case of linear regression

• Minimization of a loss function on the training data

• Quadratic programming problem for SVMs

M. Ogorzałek – p. 2/18



Validation and Model Selection

• Generalization error: How does the model perform on unseen data
(samples) ?

• Exact generalization error is not accessible since we have only limited
number of observations !

• Training on small data set tends to overfit, causing generalization error to
be significantly higher than training error

• Consequence of mismatch between the capacity of the hypothesis space H
(VC (Vapnik-Cervonenkis)-Dimension) and the number of training
observations

• Validation: Estimating the generalization error using just the given data set
– Needed for choosing optimal model structure or learning parameters

(step sizes etc.)

• Model Selection: Selecting the model with lowest (estimated) generalization
error

• But estimation of generalization error is very unreliable on small data sets
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Improving Generalization for Single Models

• Remedies:
– Manipulating training algorithm (e.g. early stopping)
– Regularization by adding a penalty to the loss function
– Using algorithms with built-in capacity control (e.g. SVM)
– Rely on criteria like BIC (Bayesian Information Criteria), AIC (Akaike),

GCV (Generalized Cross-Validation ) or Cross Validation to select
optimal model complextiy

– Reformulate the loss function :
• ǫ-insensitive loss
• Huber loss
• SVM loss for classification
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Question

• Are there any other methods to improve
generalization error ?
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Question

• Are there any other methods to improve
generalization error ?

• Yes, by combining several individual
models!
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Ensemble Methods

Ensemble: Averaging the output of several
separately trained models

• Simple average

f̄(~x) = 1

K

∑K

k=1
fk(~x)

• Weighted average
f̄(~x) =

∑
k wkfk(~x) with

∑
k wk = 1
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Ensemble Methods

Ensemble: Averaging the output of several
separately trained models

• Simple average

f̄(~x) = 1

K

∑K

k=1
fk(~x)

• Weighted average
f̄(~x) =

∑
k wkfk(~x) with

∑
k wk = 1

Interpretation:

• The ensemble generalization error is
always smaller than the expected
error of the individual models

• An ensemble should consist of well
trained but diverse models

• An ensemble often outperforms the
best constituting model

Error decomposition:

e(~x) = (y(~x) − f̄(~x))2

ǭ(~x) =
1

K

K∑

k=1

(y(~x) − fk(~x))2

ā(~x) =
1

K

K∑

k=1

(fk(~x) − f̄(~x))2

e(~x) = ǭ(~x) − ā(~x)

Integrating over input space:

E = Ē− Ā
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Decorrelating Models

E = Ē − Ā

How can we obtain models that have low gen-
eralization error (small Ē), but are mutually un-
correlated (large Ā)?

• Varying model structure (e.g. topology)

• Exploiting the disadvantage of getting
stuck in local minima:

– Varying initial conditions

– Varying parameters of the training
procedure

– Using ǫ-insensitive loss function

• Train a large population of models

• Applying resampling or sequencing tech-
niques:
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Decorrelating Models

E = Ē − Ā

How can we obtain models that have low gen-
eralization error (small Ē), but are mutually un-
correlated (large Ā)?

• Varying model structure (e.g. topology)

• Exploiting the disadvantage of getting
stuck in local minima:

– Varying initial conditions

– Varying parameters of the training
procedure

– Using ǫ-insensitive loss function

• Train a large population of models

• Applying resampling or sequencing tech-
niques:

• Resampling: Generating new data sets
by omitting or duplicating samples of the
original data set. These techniques can
be used to estimate generalization errors
and for model construction

Bootstraping Generate bootstrap
replicates by randomly drawing
samples from training set

Cross-Validation Divide data set
repeatedly in training and test part

Bumping Construct models on bootstrap
replicates and choose best model on
full data set

Bagging Bootstrap aggregation, create
several models on bootstrap
replicates and average these

Boosting Create sequence of models
where training of next model
depends on output of previous
model

M. Ogorzałek – p. 7/18



Crosstraining – Constructing Ensembles

• Finesse: Efficiently reuse samples
by combining training, validation
and selection of models

• Additional benefit of reduced
correlation between models

• Repeatedly partition data set
randomly into two sample classes
– Training set, used for training

and stopping criteria
– Test set, used only for

accessing generalization error
after model has been trained
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Crosstraining – Constructing Ensembles

• Finesse: Efficiently reuse samples
by combining training, validation
and selection of models

• Additional benefit of reduced
correlation between models

• Repeatedly partition data set
randomly into two sample classes
– Training set, used for training

and stopping criteria
– Test set, used only for

accessing generalization error
after model has been trained

• Train population of (heterogenous)
models, select best ones
according to error on test set

• Repartition data set, taking care
that test sets are mutually disjunct

• Combine best models of all
partitionings to ensemble

• Optionally weight models accord-
ing to the estimated generalization
error on the total data set
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Pros and Cons of Ensembles

Ensemble Methods

• Advantages
– Straightforward extension of

existing modeling algorithms
– Almost fool-proof minimization

of generalization error
– Makes no assumptions on the

structure of the underlying
models

– Simplifies the problem of
model selection

• Disadvantages
– Increased computational effort
– Interpretation of ensemble is

even harder than drawing
conclusions from a single
model
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models

– Simplifies the problem of
model selection

• Disadvantages
– Increased computational effort
– Interpretation of ensemble is

even harder than drawing
conclusions from a single
model

Combining Heterogenous Models

• Advantages
– Often one model type

performs superior on the given
data set

– Probability of using an
unsuited model type
decreases

– Inherent decorrelation even
without manipulating data set
or training parameters

• Disadvantages
– Accessing the generalization

performance of heterogenous
models is even more difficult
than for models of same type
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The ENTOOL Toolbox for Statistical Learning

• The ENTOOL toolbox for
statistical learning is designed to
make state-of-the-art machine
learning algorithms available
under a common interface

• Allows construction of single
models or ensembles of
(heterogenous) models

• Supports decorrelation of models
by offering resampling techniques

• Though primarily designed for re-
gression, it is possible to construct
ensembles of classifiers with EN-
TOOL
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The ENTOOL Toolbox for Statistical Learning

• The ENTOOL toolbox for
statistical learning is designed to
make state-of-the-art machine
learning algorithms available
under a common interface

• Allows construction of single
models or ensembles of
(heterogenous) models

• Supports decorrelation of models
by offering resampling techniques

• Though primarily designed for re-
gression, it is possible to construct
ensembles of classifiers with EN-
TOOL

• Requirements:
– Matlab (TM)

• Operating systems:
– Windows
– Linux
– Solaris (limited)
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ENTOOL Software Architecture

• Each model type is implemented
as separate class

• All model classes share common
interface

• Exchange model types by
exchanging constructor call

• Automatic generation of
ensembles of models

• Models are divided into two
brands:
1. Primary models like linear

models, neural networks,
SVMs etc.

2. Secondary models that rely on
primary models to calculate
output. All ensemble models
are secondary models.
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• Each model type is implemented
as separate class

• All model classes share common
interface

• Exchange model types by
exchanging constructor call

• Automatic generation of
ensembles of models

• Models are divided into two
brands:
1. Primary models like linear

models, neural networks,
SVMs etc.

2. Secondary models that rely on
primary models to calculate
output. All ensemble models
are secondary models.

• Lifecycle of a model can be
divided into three phases:
1. During construction, topology

of the model is specified. The
model can’t be used yet.

2. Model has now to be trained
on some training data set
(~xi, yi)

3. After training, the model can
be evaluated on new/unseen
inputs (~xn)

• Constructors should assign
random default topologies in order
to create uncorrelated models

• It is possible to construct ensem-
bles of ensembles
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Syntax

• Constructor syntax:
model = perceptron; creates a MLP model with default topology
model = perceptron(12); MLP model with 12 hidden layer neurons
model = ridge; creates a linear model by ridge regression
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Syntax

• Constructor syntax:
model = perceptron; creates a MLP model with default topology
model = perceptron(12); MLP model with 12 hidden layer neurons
model = ridge; creates a linear model by ridge regression

• Training syntax:
model = train(model, x, y, [], [], 0.05);
trains model with ǫ-insensitive loss of 0.05 on data set (~xi, yi)

• Evaluation syntax:
y_new = calc(model, x_new) evaluates the model on new inputs

• How to build an ensemble of models:
ens = crosstrainensemble; will create an empty ensemble object
ens = train(ens, x, y, [], [], 0.05); calls training routines for
several primary models and joins them into ensemble object
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Adjusting class specific training parameters

• 5th argument when calling train specifies training parameters
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Adjusting class specific training parameters

• 5th argument when calling train specifies training parameters

• Except topology, often training parameters have to be specified:
tp = get(perceptron, ’trainparams’)
error_loss_margin: 0.0100
decay: 0.0010
rounds: 500
mrate_init: 0.0100
max_weight: 10
mrate_grow: 1.2000
mrate_shrink: 0.5000
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Adjusting class specific training parameters

• 5th argument when calling train specifies training parameters

• Except topology, often training parameters have to be specified:
tp = get(perceptron, ’trainparams’)
error_loss_margin: 0.0100
decay: 0.0010
rounds: 500
mrate_init: 0.0100
max_weight: 10
mrate_grow: 1.2000
mrate_shrink: 0.5000

• Assign new value: tp.decay = 0.05

• And give training parameters while training:
model = train(perceptron, x, y, [], tp, 0.05);
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Specifying which Model Types to Ensemble

• Ensemble constructor will train several models on dataset:
tp = get(crosstrainensemble, ’trainparams’)
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1
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Specifying which Model Types to Ensemble

• Ensemble constructor will train several models on dataset:
tp = get(crosstrainensemble, ’trainparams’)
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1

• Assign new value:
tp.modelclasses = {’perceptron’, [], {}; ...
{’lssvm’, [], {’function’, ’RBF_kernel’, 100, 2}}
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Specifying which Model Types to Ensemble

• Ensemble constructor will train several models on dataset:
tp = get(crosstrainensemble, ’trainparams’)
nr_cv_partitions: 8
frac_test: 0.2000
minimum_testsamples: 5
remove_worst: 0.3300
use_models: 0.8000
weight_models: 0
modelclasses: 6x3 cell
scaledata: 1

• Assign new value:
tp.modelclasses = {’perceptron’, [], {}; ...
{’lssvm’, [], {’function’, ’RBF_kernel’, 100, 2}}

• And give training parameters while training:
ens = train(crosstrainensemble, x, y, [], tp, 0.05);
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Primary Models Types

ares Adaption of Friedman’s MARS algorithm

ridge Linear model based on ridge regression with implicit LOO cross-validation
for selecting optimal ridge penalty

perceptron Multilayer perceptron with iRPROP+ training

perceptron2 Magnus Nørgaard’s single layer perceptron, trained with
Levenberg-Marquart

prbfn Shimon Cohen’s projection based radial basis function network

rbf Mark Orr’s radial basis function code

vicinal k-nearest-neighbor regression with adaptive metric

mpmr Thomas Strohmann’s Mimimax Probability Machine Regression

lssvm Johan Suykens’ least-square SVM toolbox

tree Adaption of Matlab’s build-in regression/classification trees

osusvm SVM code based on Chih-Jen Lin’s libSVM

vicinalclass k-nearest-neighbor classification
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http://www.salford-systems.com/products-mars.html
http://www.iau.dtu.dk/research/control/nnsysid.html
http://www.anc.ed.ac.uk/~mjo/rbf.html
http://nago.cs.colorado.edu/~strohman/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Ensemble Classes

ensemble Virtual parent class for all ensemble classes

crosstrainensemble Ensemble class that trains models according to crosstraining
scheme. Creates ensembles of decorrelated models.

cvensemble Ensemble class that trains models according to
crossvalidation/out-of-training scheme. Can be used to access OOT error.

extendingsetensemble Boosting variant for regression.

subspaceensemble Creates an ensemble of models where each single model is
trained on a random subspace of the input data set.

optimalsvm Wrapper that trains RBF osusvm/lssvm with optimal parameter
settings (C and γ)

featureselector Does feature selection and trains model on selected subset
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ENTOOL webpage

http://zti.if.uj.edu.pl/ merkwirth/entool.htm
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Application Examples

• Applications using ENTOOL
– Nonlinear Regression of Skin Permeability
– Sequence Analysis

• Molecular Graph Networks
– Classification on NCI Data Set
– Regression on KDD Challenge Data
– Skin Cancer diagnosis
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Receiver Operating Characteristics

• Most basic task of the diagnostician is to 
separate abnormal subjects from normal 
subjects

• In many cases there is significant overlap 
in terms of the appearance of the image
– Some abnormal patients are normal-looking 
– Some normal patients are abnormal-looking 



2 x 2 decision matrix

Actually 
Abnormal

Actually 
Normal

Diagnosed as 
Abnormal

True Positive 
(TP)

False Positive 
(FP)

Diagnosed as 
Normal

False Negative 
(FN)

True Negative 
(TN)



ROC curves (cont.)

• For a single threshold value and the population 
being studied, a single value for TP, TN, FP, and 
FN can be computed

• The sum TP + TN + FP + FN will be equal to the 
total number of normals and abnormals in the 
study population

• “True” diagnosis must be determined 
independently, based on biopsy confirmation, 
long-term patient follow-up, etc.





ROC curves (cont.)
• True-positive fraction (TPF) = TP/(TP + FN)
• False-positive fraction (FPF) = FP/(FP + TN)
• A ROC curve is a plot of the true-positive 

fraction versus the false-positive fraction.  A 
single threshold value will produce a single point 
on the ROC curve

• In practice, 5 points are realized based on the 
confidence level of the observer (definitely there, 
maybe there, uncertain, maybe not there, and 
definitely not there)



Sensitivity and specificity

• Sensitivity is the fraction of abnormal cases that 
a decision maker actually calls abnormal:

• Specificity is the fraction of normal cases that a 
decision maker actually calls normal:

FNTP
TP y Sensitivit
+

=

FPTN
TN y Specificit
+

=



Interpretation

• An ROC curve is essentially a way of analyzing 
the SNR associated with a certain diagnostic 
task

• In addition to the inherent SNR of the imaging 
modality under investigation, different human 
observers have internal noise, which affects 
individual performance

• Different radiologists may have different ROC 
curves





Interpretation (cont.)
• Set A has almost complete overlap between 

abnormal and normal cases
– The SNR is near zero; ROC curve A represents pure 

guessing in terms of the diagnosis
• As separation between normal and abnormal 

cases increases (sets B & C), the corresponding 
ROC curves approach the upper left corner

• Area under the ROC curve is a measure of 
detectability
– For worst performance,
– For best performance, 0.1A

5.0A

 Z

Z

=
=



Sensitivity Analysis for Regression

• Motivation: Determine variable
importance with respect to
prediction accuracy

• Might help uncovering causal
relationships of underlying
process

• Problem: Ensemble of
heterogenous (nonlinear) models
is even more difficult to analyze
than single models

• Idea: Combine surrogate data
method with OOT calculation
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relationships of underlying
process

• Problem: Ensemble of
heterogenous (nonlinear) models
is even more difficult to analyze
than single models

• Idea: Combine surrogate data
method with OOT calculation

• To determine importance of n-th
variable:
– Create surrogate/replicate of

the original input data set
where values of n-th variable
are permuted randomly to
destroy information content

– Calculate OOT output for
surrogate data set

– Compare errors of OOT output
of surrogate and original data
set

– If OOT error increases
significantly, the n-th variable
is important!

– Average importance over
several surrogate data sets for
same variable to smooth out
noise
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Sensitivity Analysis for Regression

• Motivation: Determine variable
importance with respect to
prediction accuracy

• Might help uncovering causal
relationships of underlying
process

• Problem: Ensemble of
heterogenous (nonlinear) models
is even more difficult to analyze
than single models

• Idea: Combine surrogate data
method with OOT calculation

• Retraining unnecessary, would
mask importance of correlated
inputs

• Uncovers linear and nonlinear re-
lationships

• To determine importance of n-th
variable:
– Create surrogate/replicate of

the original input data set
where values of n-th variable
are permuted randomly to
destroy information content

– Calculate OOT output for
surrogate data set

– Compare errors of OOT output
of surrogate and original data
set

– If OOT error increases
significantly, the n-th variable
is important!

– Average importance over
several surrogate data sets for
same variable to smooth out
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Nonlinear Regression of Skin Permeability

• 93 compounds described by 131
descriptors

• Ensemble of linear ridge models
and k-nearest neighbor models

• Identified 8 descriptors by
sensitivity analysis: ’Mass’ ’Log P
(oct/wat)’ ’Cosmo’ ’weinerPol’
’logP(o/w)’ ’SM 5.0R’ ’TPSA’ ’vol’

• Exhaustive check of all
combinations of these descriptors
leads to two final models:
– ’Mass’ ’logP(o/w)’ ’Cosmo’

with OOT error on training
data set of 0.30 RMSE and on
validation set of 0.31 RMSE

– ’Mass’ ’SM 5.0R’ ’Log P
(oct/wat)’ with RMSE
0.28/0.28
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Sensitivity Analysis for Sequence Analysis

• Motivation: Determine importance
of amino acid positions with
respect to genotype-phenotype
prediction accuracy

• Same idea as the sensitivity
analysis for regression, but:
– decrease in AUC (area under

curve in ROC plot) instead of
increase of MSE

– random permutation of amino
acids for each position

– p. 3/7



Sensitivity Analysis for Sequence Analysis

• Motivation: Determine importance
of amino acid positions with
respect to genotype-phenotype
prediction accuracy

• Same idea as the sensitivity
analysis for regression, but:
– decrease in AUC (area under

curve in ROC plot) instead of
increase of MSE

– random permutation of amino
acids for each position

Application to HIV Receptor Interaction

• Data set of 355 samples with 63
AA positions

• Binary classification problem with
89 sequences that can use the
CXCR4 receptor and 266
negatives

• Data set must be aligned first

• Ensemble of SVM, linear and
k-NN classifiers

• Drawback: Quality of sensitivity
analysis strongly depends on OOT
prediction accuracy

• Pro: Method can be used uni-
versally for genotype-phenotype
matching and other classification
settings
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Sequence Analysis cont.

• Reasonable prediction accuracy
on original data

• OOT AUC of 0.91
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NCI Data Set

• DTP AIDS Antiviral Screen

• Total 42682 compounds (7
outtakes)

• Three classes:
1. CA - Confirmed active 423
2. CM - Confirmed moderate

1080 compounds
3. CI - Confirmed inactive

compounds

• No information about targets

• Random partition into training
set of 35000 compounds and
test set of 7682 compounds

• Ensemble of networks trained
with classification loss

3
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Results : Classification on NCI Data Set
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Results : Toxicity Prediction

• EPA Fathead Minow Acute
Toxicity Data Set of 617 industrial
organic chemicals

• Predicting experimental LC 50

• MGN with 8 feature nets of 2-9
layers

• 50 fold Cross-Validation with 10%
test on 577 compounds

r2 = 0.58

Russom, C.L., S.P. Bradbury, S.J.

Broderius, D.E. Hammermeister, and

R.A. Drummond (1997) Predicting

modes of action from chemical structure:

Acute toxicity in the fathead minnow

(Pimephales promelas), Environmen-

tal Toxicology and Chemistry 16(5),

948-967
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Image differentiation

Dysplastic Melanoma



Measurements
Geometry:
• Vertical and horizontal

symmetry
• Color symmetry
• Heigth and width
• Area of the lesion against the

size of the photograph
• Perimeter (langth of borders)

Statistical Measurements:
• Color distribution (white, black

and grey-blue), 
• Estimated area
• Estimated perimeter
• Average distribution of RGB 

components in the lesion
• Average distribution of color

components (HSV, YIQ, 
YCbCr)

• Binary connetions of color
components



TDS (Total Dermoscopy Score)
TDS = A * 1,3 + B * 0,1 + C * 0,5 + D * 0,5

ABCD evaluation
Property TDS
Asymmetry
Border 
Color 
Different structural
components

x 1.3
x 0.1
x 0.5
x 0.5

outcome < 4.75 - benignant
4.8 - 5.45 – suspected
melanoma
> 5.45 – probable melanoma



Test for all coefficients
• AUC - 0.8239

No. Coefficient No Coefficient
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

21
33
39
14
15
38
29
16
31
36
45
4
34
13
1
2
11
44
3
5
35
37
43

Sum of bckgrnd color comp
Average Cr component
Average V of background
Average red
Average green
Average S of background
Average S
Average blue
Average luminance
Average Q
Average Q of background
Estimated size (px)
Average Y
symmmetry (%)
Area of the lesion (%)
Area of the lesion (px)
Gray-blue (px)
Average I of background
Area of background (px)
Height (px)
Average I
Average H of background
Average Y of background

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

9
30
42
40
7
32
18
19
6
28
10
17
12
20
25
41
8
22
24
23
27
26

White color (px)
Average V
Average comp. Cr bckgrnd
Average luminance bckgrnd
Borders
Average comp. Cb
Average green in bckgrnd
Average blue in bckgrnd
Width (px)
Average H
Black color (px)
Average red in backgrnd
Grey-blue
Sum of color components
Binary sum of GBR
Average Cb comp
backgrnd
Estimated borderline
Binary RGB composition
Binary GRB composition
Binary RBG composition
Binary BGR composition



Single coefficient test

• AUC - 0.4212



6 coefficients

• AUC - 0.9483 



Test with 15 strongest coefficients

• AUC - 0.9175



Test for whole data set

• AUC - 0.9529



Test for 15 best coefficients

• AUC - 0.9851
No. Coefficient

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

21
14
15
13
16
34
38
43
12
36
18
31
39
45
30

Sum of color comp of bckgrnd
Average red
Average green
symmetry (%)
Average blue
Average Y
Average S of background
Average Y of background
Grey‐blue – black and white
Average Q
Average green of background
Average luminance
Average V of background
Average Q of background
Average V



Set of 17 coefficients (best results) 

No Coefficient

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

21
14
15
13
16
34
38
43
12
36
18
31
39
45
30
35
44

Sum of color comp. of the background
Average red 
Average green
symmetry (%)
Average blue
Average Y
Average S of the background
Average Y of the background
Grey‐blue – black and white
Average Q
Average green of the background
Average luminance
Average V of the background
Average Q of the background
Average V
Average I
Average I of the background

• AUC – 0.9963 



Image verification

Dysplastic Melanoma



Summary

• Ensemble methods for
classification and regression

• ENTOOL - Ensemble toolbox for
Matlab

• State-of-the art machine learning
techniques

• Variety of primary and secondary
model types

• Out-of-Train technique for
accessing generalization error

• Sensitivity Analysis for
classification and regression

• Application to skin permeability

• Application to genotype-phenotype
matching
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• Ensemble methods for
classification and regression

• ENTOOL - Ensemble toolbox for
Matlab

• State-of-the art machine learning
techniques

• Variety of primary and secondary
model types

• Out-of-Train technique for
accessing generalization error

• Sensitivity Analysis for
classification and regression

• Application to skin permeability

• Application to genotype-phenotype
matching

• Applicable to data sets of any size

• Classification of active/inactive
compounds NCI Antiviral Screen

• Toxicity prediction as regression
problem
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